
THE METHODOLOGY OF INDIAN MATHEMATICS  
  
  

I.  ALLEGED ABSENCE OF PROOFS IN INDIAN MATHEMATICS 
  
Several books have been written on the history of Indian tradition in mathematics.1 In 
addition, many books on history of mathematics devote a section, sometimes even a 
chapter, to the discussion of Indian mathematics. Many of the results and algorithms 
discovered by the Indian mathematicians have been studied in some detail. But, little 
attention has been paid to the methodology and foundations of Indian mathematics. 
There is hardly any discussion of the processes by which Indian mathematicians arrive 
at and justify their results and procedures. And, almost no attention is paid to the 
philosophical foundations of Indian mathematics, and the Indian understanding of the 
nature of mathematical objects, and validation of mathematical results and procedures. 
  
Many of the scholarly works on history of mathematics assert that Indian 
Mathematics, whatever its achievements, does not have any sense of logical rigor. 
Indeed, a major historian of mathematics presented the following assessment of Indian 
mathematics over fifty years ago: 
 

The Hindus apparently were attracted by the arithmetical and 
computational aspects of mathematics rather than by the geometrical 
and rational features of the subject which had appealed so strongly to 
the Hellenistic mind. Their name for mathematics, gaõita, meaning 
literally the ‘science of calculation’ well characterises this preference. 
They delighted more in the tricks that could be played with numbers 
than in the thoughts the mind could produce, so that neither Euclidean 
geometry nor Aristotelian logic made a strong impression upon them. 
The Pythagorean problem of the incommensurables, which was of 
intense interest to Greek geometers, was of little import to Hindu 
mathematicians, who treated rational and irrational quantities, 
curvilinear and rectilinear magnitudes indiscriminately. With respect to 
the development of algebra, this attitude occasioned perhaps and 
incremental advance, since by the Hindus the irrational roots of the 
quadratics were no longer disregarded as they had been by the Greeks, 
and since to the Hindus we owe also the immensely convenient concept 
of the absolute negative. These generalisations of the number system 
and the consequent freedom of arithmetic from geometrical 
representation were to be essential in the development of the concepts 
of calculus, but the Hindus could hardly have appreciated the 
theoretical significance of the change… 
 

                                                 
1We may cite the following standard works: B. B. Datta and A. N. Singh, History of Hindu 
Mathematics, 2 Parts, Lahore 1935, 1938, Reprint, Delhi 1962; C. N. Srinivasa Iyengar, History of 
Indian Mathematics, Calcutta 1967; A. K. Bag, Mathematics in Ancient and Medieval India, Varanasi 
1979; T. A. Saraswati Amma, Geometry in Ancient and Medieval India, Varanasi 1979; G. C. Joseph, 
The Crest of the Peacock: The Non-European Roots of Mathematics, 2nd Ed., Princeton 2000. 
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The strong Greek distinction between the discreteness of number and 
the continuity of geometrical magnitude was not recognised, for it was 
superfluous to men who were not bothered by the paradoxes of Zeno or 
his dialectic. Questions concerning incommensurability, the 
infinitesimal, infinity, the process of exhaustion, and the other inquiries 
leading toward the conceptions and methods of calculus were 
neglected.2   

 
Such views have found their way generally into more popular works on history of 
mathematics. For instance, we may cite the following as being typical of the kind of 
opinions commonly expressed about Indian mathematics: 
   

As our survey indicates, the Hindus were interested in and contributed 
to the arithmetical and computational activities of mathematics rather 
than to the deductive patterns. Their name for mathematics was gaõita, 
which means “the science of calculation”. There is much good 
procedure and technical facility, but no evidence that they considered 
proof at all. They had rules, but apparently no logical scruples. 
Moreover, no general methods or new viewpoints were arrived at in 
any area of mathematics.  
 
It is fairly certain that the Hindus did not appreciate the significance of 
their own contributions. The few good ideas they had, such as separate 
symbols for the numbers from 1 to 9, the conversion to base 10, and 
negative numbers, were introduced casually with no realisation that 
they were valuable innovations. They were not sensitive to 
mathematical values. Along with the ideas they themselves advanced, 
they accepted and incorporated the crudest ideas of the Egyptians and 
Babylonians.3 

 

The burden of scholarly opinion is such that even eminent mathematicians, many of 
whom have had fairly close interaction with contemporary Indian mathematics, have 
ended up subscribing to similar views, as may be seen from the following remarks of 
one of the towering figures of twentieth century mathematics: 
 

For the Indians, of course, the effectiveness of the cakravāla could be 
no more than an experimental fact, based on their treatment of great 
many specific cases, some of them of considerable complexity and 

                                                 
2 C.B.Boyer, The History of Calculus and its Conceptual development, New York 1949, p.61-62. As 
we shall see in the course of this article, Boyer’s assessment – that the Indian mathematicians did not 
reach anywhere near the development of calculus or mathematical analysis, because they lacked the 
sophisticated methodology developed by the Greeks – seems to be thoroughly misconceived. In fact, in 
stark contrast to  the development of mathematics in the Greco-European tradition, the methodology of 
Indian mathematical tradition seems to have ensured continued and significant progress in all branches 
of mathematics till barely two hundred years ago; it also led to  major discoveries in calculus or 
mathematical analysis, without in anyway abandoning or even diluting its standards of logical rigour, so 
that these results, and the methods by which they were obtained, seem as much valid today as at the 
time of their discovery. 
3Morris Kline, Mathematical Thought from Ancient to Modern Times, Oxford 1972, p.190. 
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involving (to their delight, no doubt) quite large numbers. As we shall 
see, Fermat was the first one to perceive the need for a general proof, 
and Lagrange was the first to publish one. Nevertheless, to have 
developed the cakravāla and to have applied it successfully to such 
difficult numerical cases as N=61, or N=67 had been no mean 
achievements.4 

 
Modern scholarship seems to be unanimous in holding the view that Indian 
mathematics lacks any notion of proof. But even a cursory study of the source-works 
that are available in print would reveal that Indian mathematicians place much 
emphasis on providing what they refer to as upapatti (proof, demonstration) for every 
one of their results and procedures. Some of these upapattis were noted in the early 
European studies on Indian mathematics in the first half of the nineteenth Century. For 
instance, in 1817, H. T. Colebrooke notes the following in the preface to his widely 
circulated translation of portions of Brahmasphuñasiddhānta of Brahmagupta and 
Līlāvatī and Bījagaõita of Bhāskarācārya:  
 

On the subject of demonstrations, it is to be remarked that the Hindu 
mathematicians proved propositions both algebraically and 
geometrically: as is particularly noticed by Bhāskara himself, towards 
the close of his algebra, where he gives both modes of proof of a 
remarkable method for the solution of indeterminate problems, which 
involve a factum of two unknown quantities.5 

 
Another notice of the fact that detailed proofs are provided in the Indian texts on 
mathematics is due to Charles Whish who, in an article published in 1835, pointed out 
that infinite series for π and for trigonometric functions were derived in texts of Indian 
mathematics much before their ‘discovery’ in Europe. Whish concluded his paper 
with a sample proof from the Malayalam text Yuktibhāùā of the theorem on the square 
of the diagonal of a right angled triangle and also promised that:  

 
A further account of the Yuktibhāùā, the demonstrations of the rules for 
the quadrature of the circle by infinite series, with the series for the 

                                                 
4 André Weil, Number Theory: An Approach through History from Hammurapi to Legendre, Boston 
1984, p.24. It is indeed ironical that Prof. Weil has credited Fermat, who is notorious for not presenting 
any proof for most of the claims he made, with the realisation that mathematical results need to be 
justified by proofs. While the rest of this article is purported to show that the Indian mathematicians  
presented logically rigorous proofs for most of the results and processes that they discovered, it must be 
admitted that the particular example that Prof. Weil is referring to, the effectiveness of the cakravāla  
algorithm (known to the Indian mathematicians at least from the time of Jayadeva, prior to the eleventh 
century) for solving quadratic indeterminate equations of the form x2 – Ny2  = 1, does not seem to have 
been demonstrated in the available source-works. In fact, the first proof of this result was given  by  
Krishnaswamy Ayyangar barely seventy-five years ago (A.A. Krishnaswamy Ayyangar,  ‘New Light on 
Bhāskara’s Cakravāla or Cyclic Method of solving Indeterminate Equations of the Second Degree in 
Two Variables’, Jour Ind. Math. Soc. 18, 228-248, 1929-30). Krishnaswamy Ayyangar also showed 
that the cakravāla algorithm is different and more optimal than the Brouncker-Wallis-Euler-Lagrange 
algorithm for solving this so-called “Pell’s Equation.”       
5 H T Colebrooke, Algebra with Arithmetic and Mensuration from the Sanskrit of Brahmagupta and 
Bhāskara, London 1817, p.xvii. Colebrooke also presents some of the upapattis given by the 
commentators Gaõeśa Daivajña and Kçùõa Daivajña, as footnotes in his work.  
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sines, cosines, and their demonstrations, will be given in a separate 
paper: I shall therefore conclude this, by submitting a simple and 
curious proof of the 47th proposition of Euclid [the so called 
Pythagoras theorem], extracted from the Yuktibhāùā.6 

 
It would indeed be interesting to find out how the currently prevalent view, that Indian 
mathematics lacks the notion of proof, obtained currency in the last 100-150 years. 
 

 
II. GAöITA:  INDIAN MATHEMATICS 

 
Gaõita, Indian mathematics, is defined as follows by Gaõeśa Daivajña, in his famous 
commentary Buddhivilāsinī on Bhāskarācārya’s Līlāvatī: 

 
gaõyate sa§khyāyate tadgaõitam. tatpratipādakatvena  
tatsa§jña§ śāstram ucyate. 7 

 
Gaõita is calculation and numeration; and the science that forms the basis of this is 
also called gaõita. Gaõita is of two types: vyaktagaõita and avyaktagaõita. 
Vyaktagaõita, also called pāñīgaõita, calculations on the board, is the branch of gaõita 
that employs manifest quantities for performing calculations. Avyaktagaõita, also 
called Bījagaõita, takes recourse to the use of avyakta or unknown (indeterminate, un-
manifest) quantities such as yāvat-tāvat (so much as), kālaka (black), nīlaka (blue) 
etc. The avyakta quantities are also called varõas (colours) and are denoted by 
symbols yā, kā, nī, just as in modern algebra unknowns are denoted by symbols x, y, z, 
etc. 
  
Gaõita is generally taken to be a part of jyotiþśāstra. Nçsi§ha Daivajña, in his 
exposition, vārttika, on the commentary Vāsanābhāùya by Bhāskarācārya on his own 
Siddhāntaśiromaõi, says that the gaõita-skandha of jyotiþśāstra is composed of four 
types of gaõitas: vyakta-gaõita, avyakta-gaõita, graha-gaõita (mathematical 
astronomy which deals with calculation of planetary positions) and gola-gaõita 
(spherical astronomy, which includes demonstrations of procedures of calculation 
using gola, the sphere, and vedha, observations). According to Gaõeśa Daivajña the 
prayojana (purpose) of gaõita-śāstra is ‘the acquisition of knowledge concerning 
orbits, risings, settings, dimensions etc., of the planets and stars; and also the 
knowledge of sa§hitā (omens), jātaka (horoscopy), etc., which are indicators of the 
merits and demerits earned through the actions of former births’.8  
 
It is not that the study of mathematics is entirely tied to astronomy. The ancient texts 
dealing with geometry, the Śulva Sūtras are part of Kalpa, a Vedāïga different from 

                                                 
6 C.M Whish, ‘On the Hindu Quadrature of the Circle, and the infinite series of the proportion of the 
circumference to the diameter exhibited in the four Shastras, the Tantrasangraham, Yucti Bhasa, Carana 
Paddhati and Sadratnamala’, Trans. Roy. As. Soc. (G.B.) 3, 509-523, 1835. However, Whish does not 
seem to have published any further paper on this subject. 
7 Buddhivilāsinī of Gaõeśa Daivajña (c.1545) on Līlāvatī of Bhāskarācārya II (c.1150), V.G. Apte 
(ed.), Vol I, Pune 1937, p. 5. 
8 Buddhivilāsinī, cited above, p.7 
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Jyotiùa, and deal with the construction of yajña-vedīs, alters. Much later, the Jaina 
mathematician Mahāvīrācārya (c.850) enumerates the uses of gaõita in several 
contexts as follows:9 
  

In all transactions, which relates to worldly, Vedic or other similar 
religious affairs calculation is of use. In the science of love, in the 
science of wealth, in music and in drama, in the art of cooking, in 
medicine, in architecture, in prosody, in poetics and poetry, in logic 
and grammar and such other things, and in relation to all that 
constitutes the peculiar value of the arts, the science of calculation 
(gaõita) is held in high esteem. In relation to the movement of the Sun 
and other heavenly bodies, in connection with eclipses and 
conjunctions of planets, and in connection with the tripraśna 
(direction, position and time) and the course of the Moon−indeed in all 
these it is utilised. The number, the diameter and the perimeter of 
islands, oceans and mountains; the extensive dimensions of the rows of 
habitations and halls belonging to the inhabitants of the world of light, 
of the world of the gods and of the dwellers in hell, and other 
miscellaneous measurements of all sort−all these are made out by the 
help of gaõita. The configuration of living beings therein, the length of 
their lives, their eight attributes, and other similar things; their progress 
and other such things, their staying together, etc.−all these are 
dependent upon gaõita (for their due comprehension). What is the 
good of saying much? Whatever there is in all the three worlds, which 
are possessed of moving and non-moving beings, cannot exist as apart 
from gaõita (measurement and calculation). 

 
The classification of gaõita into avyakta and vyakta depends on whether 
indeterminate quantities like yāvat-tāvat etc. are employed in the various processes 
discussed. Thus vyakta-gaõita subsumes not only arithmetic and geometry, but also 
topics included in ‘algebra’, such as solutions of equations, if no indeterminate 
quantities are introduced for finding the solutions. The celebrated text, Līlāvatī of 
Bhāskarācārya II (c.1150) deals with vyakta-gaõita and is divided into the following 
sections: (1) Paribhāùā (units and measures); (2) Sa§khyā-sthāna (place-value 
system); (3) Parikarmāùñaka (eight operations of arithmetic, namely addition, 
subtraction, multiplication, division, square, square-root, cube, cube-root), (4) Bhinna-
parikarma (operations with fractions); (5) Śūnya-parikarma (operations with zero), 
(6) Prakīrõa (miscellaneous processes, including trairāśika (rule of three); (7) Miśra-
vyavahāra (investigation of mixture, ascertaining composition as principal and 
interest joined and so forth); (8) Śreóhī- vyavahāra (progressions and series); (9) 
Kùetra-vyavahāra (plane geometry); (10) Khāta- vyavahāra (excavations and solids); 
(11) Citi, Krakaca and Rāśi-vyavahāra (calculation with stacks, saw, mounds of 
grain), (12) Chāyā-vyavahāra (gnomonics); (13) Kuññaka (linear indeterminate 
equations); (14) Aïkapāśa (combinatorics of digits). 
  

                                                 
9Gaõitasārasaïgraha of Mahāvīrācārya, 1.9-16, cited in B. B. Datta and A. N. Singh, Vol. I, 1935, 
cited earlier, p.5 
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The text Bījagaõita of Bhāskarācārya deals with avyakata-gaõita and is divided into 
the following sections: (1) Dhanaçõa-ùaóvidha (the six operations with positive and 
negative quantities, namely addition, subtraction, multiplication, division, square and 
square-root); (2) Kha-ùaóvidha (the six operations with zero); (3) Avyakta-ùaóvidha 
(the six operations with indeterminate quantities); (4) Karaõī-ùaóvidha (the six 
operations with surds); (5) Kuññaka (linear indeterminate equations); (6) Varga-prakçti 
(quadratic indeterminate equation of the form Nx2+m=y2); (7) Cakravāla (cyclic 
process for the solution of above quadratic indeterminate equation); (8) Ekavarõa-
samīkaraõa  (simple equations with one unknown); (9) Madhyamāharaõa (quadratic 
etc. equations); (10) Anekavarõa-samīkaraõa (simple equations with several 
unknowns); (11) Madhyamāharaõa-bheda (varieties of quadratics); (12) Bhāvita 
(equations involving products). Here, the first seven sections, starting from 
Dhanaçõa-ùaóvidha to Cakravāla are said to be bījopayogī (adjuncts to algebraic 
analysis) and the last five sections deal with bīja, which is mainly of two types: 
Ekavarõa-samīkaraõa (equation with single unknown) and Anekavarõa-samīkaraõa 
(equation with several unknowns). 
  
Gaõeśa Daivajña raises the issue of the propriety of including discussion of kuññaka 
(linear indeterminate equations) and aïkapāśa (combinatorics), etc. in the work on 
vyakta-gaõita, Līlāvatī, as they ought to be part of Bījagaõita. He then goes on to 
explain that this is alright as an exposition of these subjects can be given without 
employing avyakta-mārga, i.e., procedures involving use of indeterminate quantities.  
 
An interesting discussion of the relation between vyakta and avyakta-gaõita is to be 
found in the commentary of Kçùõa Daivajña on Bījagaõita of Bhāskarācārya.10 The 
statement of Bhāskara, ‘vyaktam avyaktabījam’ can be interpreted in two ways: Firstly 
that vyakta is the basis of avyakta (avyaktasya bījam), because without the knowledge 
of vyakta-gaõita (composed of addition, and other operations, the rule of three, etc.) 
one cannot even think of entering into a study of avyakta-gaõita. It is also true that 
vyakta is that which is based on avyakta (avyakta§ bīja§ yasya), because though the 
procedures of vyakta-gaõita do not depend upon avyakta methods for being carried 
through (svarūpa-nirvāha), when it comes to justifying the vyakta methods by 
upapattis or demonstrations, vyakta-gaõita is dependent on avyakta-gaõita. 
 

 
III UPAPATTIS  IN INDIAN MATHEMATICS 

  
The tradition of Upapattis in Mathematics and Astronomy 
 
A major reason for our lack of comprehension, not merely of the Indian notion of 
proof, but also of the entire methodology of Indian mathematics, is the scant attention 
paid to the source-works so far. It is said that there are over one hundred thousand 
manuscripts on Jyotiþśāstra, which includes, apart from works in gaõita-skandha 
(mathematics and mathematical astronomy), also those in sa§hitā-skandha (omens) 
and hora (astrology).11 Only a small fraction of these texts have been published. A 
                                                 
10 Bījapallavam commentary of Kçùõa Daivajña on Bījagaõita of Bhāskarācārya, T.V.Radhakrishna 
Sastri (ed.), Tanjore 1958, p.6-7. 
11D. Pingree, Jyotiþśāstra: Astral and Mathematical Literature, Wiesbaden 1981, p.118. 



 7

recent publication, lists about 285 published works in mathematics and mathematical 
astronomy. Of these, about 50 are from the period before 12th century AD, about 75 
from 12th-15th centuries, and about 165 from 16th-19th centuries.12  
  
Much of the methodological discussion is usually contained in the detailed 
commentaries; the original works rarely touch upon such issues. Modern scholarship 
has concentrated on translating and analysing the original works alone, without paying 
much heed to the commentaries. Traditionally the commentaries have played at least 
as great a role in the exposition of the subject as the original texts. Great 
mathematicians and astronomers, of the stature of Bhāskarācārya-I, Bhāskarācārya-II, 
Parameśvara, Nīlakaõñha Somasutvan, Gaõeśa Daivajña, Munīśvara and Kamālakara, 
who wrote major original treatises of their own, also took great pains to write erudite 
commentaries on their own works and on works of earlier scholars. It is in these 
commentaries that one finds detailed upapattis of the results and procedures discussed 
in the original text, as also a discussion of the various methodological and 
philosophical issues.  For instance, at the beginning of his commentary 
Buddhivilāsinī, Gaõeśa Daivajña states: 
  

There is no purpose served in providing further explanations for the 
already lucid statements of Śrī Bhāskara. The knowledgeable 
mathematicians may therefore note the speciality of my intellect in the 
upapattis, which are after all the essence of the whole thing.13 

 
Amongst the published works on Indian mathematics and astronomy, the earliest 
exposition of upapattis are to be found in the bhāùya of Govindasvāmin (c 800) on 
Mahābhāskarīya of Bhāskarācārya-I, and the Vāsanābhāùya of Caturveda 
Pçthūdakasvāmin (c 860) on Brahmasphuñasiddhānta of Brahmagupta14. Then we find 
very detailed exposition of upapattis in the works of   Bhāskarācārya-II (c.1150): his 
Vivaraõa on Śiùyadhīvçddhidātantra of Lalla and his Vāsanābhāùya on his own 
Siddhāntaśiromaõi.15 Apart from these, Bhāskarācārya provides an idea of what is an 
upapatti in his Bījavāsanā on his own Bījagaõita in two places. In the chapter on 
madhyamāharaõa (quadratic equations) he poses the following problem: 
  

Find the hypotenuse of a plane figure, in which the side and upright are 
equal to fifteen and twenty. And show the upapattis (demonstration) of 
the received procedure of computation.16 
 

Bhāskarācārya provides two upapattis for the solution of this problem, the so-called 
Pythagoras theorem; and we shall consider them later.   Again, towards the end of the 

                                                 
12K. V. Sarma and B. V. Subbarayappa, Indian Astronomy: A Source Book, Bombay 1985. 
13 Buddhivilāsinī of Gaõeśa Daivajña, cited earlier, p.3 
14 The Āryabhañīyabhāùya of Bhāskara I (c.629) does occasionally indicate derivation of some of the 
mathematical procedures, though his commentary does not purport to present upapattis for the rules and 
procedures given in Āryabhañīya.   
15Ignoring all these classical works on upapattis, one scholar has recently claimed that the tradition of 
upapatti in India “dates from the 16th and 17th centuries” (J.Bronkhorst, ‘Pāõini and Euclid’, Jour. Ind. 
Phil.  29, 43-80, 2001).   
16 Bījagaõita of Bhāskarācārya, Muralidhara Jha (ed.), Varanasi 1927, p. 69. 
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Bījagaõita in the chapter on bhāvita (equations involving products), while considering 
integral solutions of equations of the form ax+ by = cxy, Bhāskarācārya explains the 
nature of upapatti with the help of an example: 
  

The upapatti (demonstration) follows. It is twofold in each case: One 
geometrical and the other algebraic. The geometric demonstration is 
here presented…The algebraic demonstration is next set forth... This 
procedure has been earlier presented in a concise form by ancient 
teachers. The algebraic demonstrations are for those who do not 
comprehend the geometric one. Mathematicians have said that algebra 
is computation joined with demonstration; otherwise there would be no 
difference between arithmetic and algebra. Therefore this explanation 
of the principle of resolution has been shown in two ways.17 

  
Clearly the tradition of exposition of upapattis is much older and Bhāskarācārya and 
later mathematicians and astronomers are merely following the traditional practice of 
providing detailed upapattis in their commentaries to earlier, or their own, works.  
 
In Appendix I we give a list of important commentaries, available in print, which 
present detailed upapattis. It is unfortunate that none of the published source-works 
that we have mentioned above has so far been translated into any of the Indian 
languages, or into English; nor have they been studied in depth with a view to analyse 
the nature of mathematical arguments employed in the upapattis or to comprehend the 
methodological and philosophical foundations of Indian mathematics and 
astronomy.18  In this article we present some examples of the kinds of upapattis 
                                                 
17Bījagaõita, cited above, p.125-127  
18We may, however, mention the following works of C. T. Rajagopal and his collaborators, which 
provide an idea of the kind of upapattis presented in the Malayalam work Yuktibhāùā of Jyeùñhadeva (c 
1530) for various results in geometry, trigonometry and those concerning infinite series for π and the 
trigonometric functions: K. Mukunda Marar, ‘Proof of Gregory’s Series’, Teacher’s Magazine 15,  28-
34, 1940; K. Mukunda Marar and C. T. Rajagopal, ‘On the Hindu Quadrature of the Circle’, 
J.B.B.R.A.S. 20,  65-82, 1944; K. Mukunda Marar and C.T.Rajagopal, ‘Gregory’s Series in the 
Mathematical Literature of Kerala’, Math. Student 13, 92-98, 1945; A. Venkataraman, ‘Some 
Interesting proofs from Yuktibhāùā’, Math Student 16, 1-7, 1948; C. T. Rajagopal, ‘A Neglected 
Chapter of Hindu Mathematics’, Scr. Math. 15,  201-209, 1949; C. T. Rajagopal and A. Venkataraman, 
‘The Sine and Cosine Power Series in Hindu Mathematics’, J.R.A.S.B. 15,  1-13, 1949; C. T. Rajagopal 
and T. V. V. Aiyar, ‘On the Hindu Proof of Gregory’s Series’, Scr. Math. 17, 65-74, 1951; 
C.T.Rajagopal and T.V.V.Aiyar, ‘A Hindu Approximation to Pi’, Scr. Math. 18, 25-30, 1952; 
C.T.Rajagopal and M.S.Rangachari, ‘On an Untapped Source of Medieval Keralese Mathematics’, 
Arch. for Hist. of Ex. Sc. 18, 89-101, 1978; C. T. Rajagopal and M. S. Rangachari, ‘On Medieval 
Kerala Mathematics’, Arch. for Hist. of Ex. Sc. 35(2), 91-99, 1986. Following the work of Rajagopal 
and his collaborators, there are some recent studies which discuss some of the proofs in Yuktibhāùā. We 
may cite the following: T. Hayashi, T.Kusuba and M.Yano, ‘The Correction of the Mādhava Series for 
the Circumference of a Circle’, Centauras, 33, 149-174, 1990; Ranjan Roy, ‘The Discovery of the 
Series formula for π by Leibniz, Gregory and Nīlakaõñha’, Math. Mag. 63, 291-306, 1990; V.J.Katz, 
‘Ideas of Calculus in Islam and India’ Math. Mag. 68, 163-174, 1995; C.K.Raju, ‘Computers, 
Mathematics Education, and the Alternative Epistemology of the Calculus in the Yuktibhāùā’, Phil. East 
and West 51, 325-362, 2001; D.F.Almeida, J.K.John and A.Zadorozhnyy, ‘Keralese Mathematics: Its 
Possible Transmission to Europe and the Consequential Educational Implications’, J. Nat. Geo. 20, 77-
104, 2001; D.Bressoud, ‘Was Calculus Invented in India?’, College Math. J. 33, 2-13, 2002; J.K.John, 
‘Deriavation of the Sa§skāras applied to the Mādhava Series in Yuktibhāùā’, in M.S.Sriram, 
K.Ramasubramanian and M.D.Srinivas (eds.), 500 Years of Tantrasaïgraha:  A Landmark in the 
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provided in Indian mathematics, from the commentaries of Gaõeśa Daivajña (c.1545) 
and Kçùõa Daivajña (c.1600) on the texts Līlāvatī and Bījagaõita respectively, of 
Bhāskarācārya -II (c.1150), and from the celebrated Malayalam work Yuktibhāùā of 
Jyeùñhadeva (c.1530).  We shall also briefly discuss the philosophical foundations of 
Indian mathematics and its relation to other Indian sciences. 
 
 
Mathematical results should be supported by Upapattis 
 
Before discussing some of the upapattis presented in Indian mathematical tradition, it 
is perhaps necessary to put to rest the widely prevalent myth that the Indian 
mathematicians did not pay any attention to, and perhaps did not even recognise the 
need for justifying the mathematical results and procedures that they employed. The 
large corpus of upapattis, even amongst the small sample of source-works published 
so far, should convince anyone that there is no substance to this myth. Still, we may 
cite the following passage from Kçùõa Daivajña’s commentary Bījapallavam on 
Bījagaõita of Bhāskarācārya, which clearly brings out the basic understanding of 
Indian mathematical tradition that citing any number of instances (even an infinite 
number of them) where a particular result seems to hold, does not amount to 
establishing that as a valid result in mathematics; only when the result is supported by 
a upapatti or a demonstration, can the result be accepted as valid:    
 

How can we state without proof (upapatti) that twice the product of 
two quantities when added or subtracted from the sum of their squares 
is equal to the square of the sum or difference of those quantities? That 
it is seen to be so in a few instances is indeed of no consequence.  
Otherwise, even the statement that four times the product of two 
quantities is equal to the square of their sum, would have to be 
accepted as valid. For, that is also seen to be true in some cases. For 
instance take the numbers 2, 2. Their product is 4, four times which 
will be 16, which is also the square of their sum 4. Or take the numbers 
3, 3. Four times their product is 36, which is also the square of their 
sum 6. Or take the numbers 4, 4. Their product is 16, which when 
multiplied by four gives 64, which is also the square of their sum 8. 
Hence, the fact that a result is seen to be true in some cases is of no 
consequence, as it is possible that one would come across contrary 
instances also. Hence it is necessary that one would have to provide a 
proof (yukti) for the rule that twice the product of two quantities when 
added or subtracted from the sum of their squares results in the square 
of the sum or difference of those quantities. We shall provide the proof 
(upapatti) in the end of the section on ekavarõa-madhyamāharaõa.19 

 
We shall now present a few upapattis as enunciated by Gaõeśa Daivajña and Kçùõa 
Daivajña in their commentaries on Līlāvatī and Bījagaõita of Bhāskarācārya. These 

                                                                                                                                            
History of Astronomy, Shimla 2002, p. 169-182.  An outline of the proofs given in Yuktibhāùā can also 
be found in T. A. Saraswati Amma, 1979, cited earlier, and more exhaustively in S. Parameswaran, The 
Golden Age of Indian Mathematics, Kochi 1998.   
19 Bījapallavam, cited earlier, p.54. 
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upapattis are written in a technical Sanskrit, much like say the English of a text on 
Topology, and our translations below are somewhat rough renderings of the original.  
  
 
The rule for calculating the square of a number 
 
According to Līlāvatī: 
 

The multiplication of two like numbers together is the square. The 
square of the last digit is to be placed over it, and the rest of the digits 
doubled and multiplied by the last to be placed above them 
respectively; then omit the last digit, shift the number (by one place) 
and again perform the like operation…  

  
Gaõeśa’s upapatti for the above rule is as follows:20 On the left we explain how the 
procedure works by taking the example of (125)2 =15,625: 
 
  
  
  
  
  
1 
 
 
 
 
 
 
1 
 
 
 
1 

 
 
 
 
 
5 
 
 
 
 
 
4 
 
 
 
 
2 

 
 
 
 
 

6 
 
 
 

4 
10 

 
 
 
 
 

5 

2

20

 
 
 
 
 

5 
 

25 

 
 
 
 
 
 
 
 

52 

2x2x5 
22 

2x1x5 
2x1x2 

12

  By using the rule on multiplication, keeping in 
mind the place-values, and by using the 
mathematics of indeterminate quantities, let us 
take a number with three digits with yā at the 
100th place, kā at the 10th place and nī at the unit 
place. The number is then [in the Indian notation 
with the plus sign understood] yā 1 kā 1 nī 1.  
 
Using the rule for the multiplication of 
indeterminate quantities, the square [of the above 
number] will be yā va 1 yā kā bhā 2 yā nī bhā 2 
kā va 1 kā nī bhā 2 nī va 1 [using the Indian 
notation, where va after a symbol stands for 
varga or square and bhā after two symbols stands 
for bhāvita or product].  
 
Here we see in the ultimate place, the square of 
the first digit yā; in second and third places there 
are kā and nī multiplied by twice the first yā. 
Hence the first part of the rule: “The square of the 
last digit…” Now, we see in the fourth place we 
have square of kā; in the fifth we have nī 
multiplied by twice kā; in the sixth we have 
square of nī. Hence it is said, “Then omitting the 
last digit move the number and again perform the 
like operation”. Since we are finding the square 
by multiplying, we should add figures 
corresponding to the same place value, and hence 
we have to move the rest of the digits. Thus the 
rule is demonstrated.   

                                                 
20Buddhivilāsinī, cited above, p.19-20. 
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While Gaõeśa provides such avyaktarītya upapattis or algebraic demonstrations for all 
procedures employed in arithmetic, Śaïkara Vāriyar, in his commentary. 
Kriyākramakarī, presents kùetragata upapattis, or geometrical demonstrations. 
  
 
Square of the diagonal of a right-angled triangle; the so-called Pythagoras Theorem: 
  
Gaõeśa provides two upapattis for calculating the square of the hypotenuse (karõa) of 
a right-angled triangle.21 These upapattis are the same as the ones outlined by 
Bhāskarācārya-II in his Bījavāsanā on his own Bījagaõita, and were referred to 
earlier. The first involves the avyakta method and proceeds as follows:22 
 

 
 
  

  
        3                     4 
 

 
 

yā               
 
 

yā = (9/ yā)  + (16/ yā) 
    
   yā 2 = 25 
 
   yā = 5 

 
 
 
 
 

  Take the hypotenuse (karõa) as the base and 
assume it to be yā. Let the bhujā and koñi (the 
two sides) be 3 and 4 respectively. Take the 
hypotenuse as the base and draw the 
perpendicular to the hypotenuse from the 
opposite vertex as in the figure. [This divides the 
triangle into two triangles, which are similar to 
the original] Now by the rule of proportion 
(anupāta), if yā is the hypotenuse the bhujā is 3, 
then when this bhujā 3 is the hypotenuse, the 
bhujā, which is now the ābādhā (segment of the 
base) to the side of the original bhujā will be 
(9/ya). Again if yā is the hypotenuse, the koñi is 4, 
then when this koñi 4 is the hypotenuse, the koñi, 
which is now the segment of base to the side of 
the (original) koñi will be (16/yā). Adding the two 
segments (ābādhās) of yā the hypotenuse and 
equating the sum to (the hypotenuse) yā, cross-
multiplying and taking the square-roots, we get 
yā = 5, the square root of the sum of the squares 
of bhujā and koñi. 

  
The other upapatti of Gaõeśa is kùetragata or geometrical, and proceeds as follows:23 
 
  
  
  
  

  Take four triangles identical to the given and 
taking the four hypotenuses to be the four sides, 
form the square as shown. Now, the interior 
square has for its side the difference of bhujā and 

                                                 
21 Buddhivilāsinī, cited earlier, p.128-129 
22Colebrooke remarks that this proof of the so-called Pythagoras theorem using similar triangles 
appeared in Europe for the first time in the work of Wallis in the seventeenth century (Colebrooke, 
cited earlier, p.xvi). The proof in Euclid’s Elements is rather complicated and lengthy.  
23This method seems to be known to Bhāskarācārya-I (c. 629 AD) who gives a very similar diagram in 
his Āryabhañīyabhāùya, K S Shukla (ed.), Delhi 1976, p.48. The Chinese mathematician Liu Hui (c 3rd 
Century AD) seems to have proposed similar geometrical proofs of the so-called Pythagoras Theorem. 
See for instance, D B Wagner, ‘A Proof of the Pythagorean Theorem by Liu Hui’, Hist. Math. 12, 71-3, 
1985. 
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  koñi. The area of each triangle is half the product 
of bhujā and koñi and four times this added to the 
area of the interior square is the area of the total 
figure. This is twice the product of bhujā and koñi 
added to the square of their difference. This, by 
the earlier cited rule, is nothing but the sum of 
the squares of bhujā and koñi. The square root of 
that is the side of the (big) square, which is 
nothing but the hypotenuse. 

 
 
The rule of signs in Algebra 
 
One of the important aspects of Indian mathematics is that in many upapattis the 
nature of the underlying mathematical objects plays an important role. We can for 
instance, refer to the upapatti given by Kçùõa Daivajña for the well-known rule of 
signs in Algebra. While providing an upapatti for the rule, “the number to be 
subtracted if positive (dhana) is made negative (çõa) and if negative is made 
positive”, Kçùõa Daivajña states: 
 

Negativity (çõatva) here is of three types−spatial, temporal and that 
pertaining to objects. In each case, [negativity] is indeed the vaiparītya 
or the oppositeness… For instance, the other direction in a line is 
called the opposite direction (viparīta dik); just as west is the opposite 
of east… Further, between two stations if one way of traversing is 
considered positive then the other is negative. In the same way past and 
future time intervals will be mutually negative of each 
other…Similarly, when one possesses said objects they would be 
called his dhana (wealth). The opposite would be the case when 
another owns the same objects… Amongst these [different 
conceptions], we proceed to state the upapatti of the above rule, 
assuming positivity (dhanatva) for locations in the eastern direction 
and negativity (çõatva) for locations in the west, as follows…24 

 
Kçùõa Daivajña goes on to explain how the distance between a pair of stations can be 
computed knowing that between each of these stations and some other station on the 
same line. Using this he demonstrates the above rule that “the number to be subtracted 
if positive is made negative…” 
 
 
The kuññaka process for the solution of linear indeterminate equations: 
 
To understand the nature of upapatti in Indian mathematics one will have to analyse 
some of the lengthy demonstrations which are presented for the more complicated 
results and procedures. One will also have to analyse the sequence in which the results 
and the demonstrations are arranged to understand the method of exposition and 
logical sequence of arguments. For instance, we may refer to the demonstration given 
                                                 
24Bījapallavam, cited above, p.13. 
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by Kçùõa Daivajña 25 of the celebrated kuññaka procedure, which has been employed 
by Indian mathematicians at least since the time of Āryabhaña (c 499 AD), for solving 
first order indeterminate equations of the form  
 

(ax + c)/b = y 
  
where a, b, c are given integers and x, y are to be solved for integers. Since this 
upapatti is rather lengthy, it is presented separately as Appendix II. Here, we merely 
recount the essential steps. Kçùõa Daivajña first shows that the solutions for x, y do 
not vary if we factor all three numbers a, b, c by the same common factor. He then 
shows that if a and b have a common factor then the above equation will not have a 
solution unless c is also divisible by the same common factor. Then follows the 
upapatti of the process of finding the greatest common factor of a and b by mutual 
division, the so-called Euclidean algorithm. He then provides an upapatti for the 
kuññaka method of finding the solution by making a vallī (table) of the quotients 
obtained in the above mutual division, based on a detailed analysis of the various 
operations in reverse (vyasta-vidhi). Finally, he shows why the procedure differs 
depending upon whether there are odd or even number of coefficients generated in the 
above mutual division. 
 
 
Nīlakaõñha’s proof for the sum of an infinite geometric seires 
 
In his Āryabhañīyabhāùya, while deriving an interesting approximation for the arc of 
circle in terms of the jyā (sine) and the śara (versine), the celebrated Kerala 
Astronomer Nīlakaõñha Somasutvan presents a detailed demonstration of how to sum 
an infinite geometric series. Though it is quite elementary compared to the various 
other infinite series expansions derived in the works of the Kerala School, we shall 
present an outline of Nīlakaõñha’s argument as it clearly shows how the notion of limit 
was well understood in the Indian mathematical tradition. Nīlakaõñha first states the 
general result 26  
 
 (a/r) + (a/r)2  + (a/r)3 + .... = a/(r-1),    
 
where the left hand side is an infinite geometric series with the successive terms being 
obtained by dividing by a cheda (common divisor), r assumed to be greater than 1. 
Nīlakaõñha notes that this result is best demonstrated by considering a particular case, 
say r = 4. Thus, what is to be demonstrated is that  
 
  (1/4) + (1/4)2 + (1/4)3 + .... = 1/3 
 
Nīlakaõñha first obtains the sequence of results 
 
 1/3 = 1/4 + 1/(4.3)  
  

                                                 
25Bijapallavam, cited above, p.85-99.  
26 Āryabhañīyabhāùya of Nīlakaõñha, Gaõitapāda, K Sambasiva Sastri (ed.), Trivandrum 1931, p.142-
143.  
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 1/(4.3) = 1/(4.4) + 1/(4.4.3) 
 
 1/(4.4.3) = 1/(4.4.4) + 1/(4.4.4.3)  
  
and so on, from which he derives the general result 
 
 1/3 - [1/4 + (1/4)2 + ... + (1/4)n] =  (1/4n)(1/3) 
  
Nīlakaõñha then goes on to present the following crucial argument to derive the sum 
of the infinite geometric series: As we sum more terms, the difference between 1/3 
and sum of powers of 1/ 4 (as given by the right hand side of the above equation), 
becomes extremely small, but never zero. Only when we take all the terms of the 
infinite series together do we obtain the equality 
 
 1/4 + (1/4)2 + ...  + (1/4)n  + ... = 1/3  
 
 
Yuktibhāùā proofs of infinite series for π and the trigonometric functions 
 
One of the most celebrated works in Indian mathematics and astronomy, which is 
especially devoted to the exposition of yukti or proofs, is the Malayalam work 
Yuktibhāùā (c.1530) of Jyeùñhadeva 27. Jyeùñhadeva states that his work closely follows 
the renowned astronomical work Tantrasaïgraha (c.1500) of Nīlakaõñha Somasutvan 
and is intended to give a detailed exposition of all the mathematics required thereof. 
The first half of Yuktibhāùā deals with various mathematical topics in seven chapters 
and the second half deals with all aspects of mathematical astronomy in eight 
chapters. The mathematical part includes a detailed exposition of proofs for the 
infinite series and fast converging approximations for π and the trigonometric 
functions, which were discovered by Mādhava (c.1375). We present an outline of 
these extremely fascinating proofs in Appendix III.   

 
 

IV. UPAPATTI AND “PROOF”  
 
Mathematics as a search for infallible eternal truths 
  
The notion of upapatti is significantly different from the notion of ‘proof’ as 
understood in the Greek and the modern Western tradition of mathematics. The 
upapattis of Indian mathematics are presented in a precise language and carefully 
display all the steps in the argument and the general principles that are employed. But 
while presenting the argument they make no reference whatsoever to any fixed set of 
axioms or link the argument to ‘formal deductions’ performed from such axioms. The 
upapattis of Indian mathematics are not formulated with reference to a formal 
axiomatic deductive system. Most of the mathematical discourse in the Greek as well 

                                                 
27Yuktibhāùā of Jyeùñhadeva, K. Chandrasekharan (ed.), Madras 1953. Gaõitādhyāya alone was edited 
along with notes in Malayalam by Ramavarma Thampuran and A. R. Akhileswara Aiyer, Trichur 1947. 
The entire work is being edited, along with an ancient Sanskrit version, Gaõitayuktibhāùā, and English 
translation, by K.V.Sarma (in press). 
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as modern Western tradition is carried out with reference to some axiomatic deductive 
system. Of course, the actual proofs presented in mathematical literature are not 
presented in a formal system, but it is always assumed that the proof can be recast in 
accordance with the formal ideal. 
 
The ideal of mathematics in the Greek and modern Western traditions is that of a 
formal axiomatic deductive system; it is believed that mathematics is and ought to be 
presented as a set of formal derivations from formally stated axioms. This ideal of 
mathematics is intimately linked with another philosophical presupposition−that 
mathematics constitutes a body of infallible absolute truths. Perhaps it is only the ideal 
of a formal axiomatic deductive system that could presumably measure up to this 
other ideal of mathematics being a body of infallible absolute truths. It is this quest for 
securing absolute certainty of mathematical knowledge, which has motivated most of 
the foundational and philosophical investigations into mathematics and shaped the 
course of mathematics in the Western tradition, from the Greeks to the contemporary 
times. 
 
For instance, we may cite the popular mathematician philosopher of our times, 
Bertrand Russell, who declares, “I wanted certainty in the kind of way in which people 
want religious faith. I thought that certainty is more likely to be found in mathematics 
than elsewhere.” In a similar vein, David Hilbert, one of the foremost mathematicians 
of our times declared, “The goal of my theory is to establish once and for all the 
certitude of mathematical methods.”28 
 
A recent book recounts how the continued Western quest for securing absolute 
certainty for mathematical knowledge originates from the classical Greek civilisation: 
  

The roots of the philosophy of mathematics, as of mathematics itself, 
are in classical Greece. For the Greeks, mathematics meant geometry, 
and the philosophy of mathematics in Plato and Aristotle is the 
philosophy of geometry. For Plato, the mission of philosophy was to 
discover true knowledge behind the veil of opinion and appearance, the 
change and illusion of the temporal world. In this task, mathematics 
had a central place, for mathematical knowledge was the outstanding 
example of knowledge independent of sense experience, knowledge of 
eternal and necessary truths.29  

 
 
The Indian epistemological view 
 
Indian epistemological position on the nature and validation of mathematical 
knowledge is very different from that in the Western tradition. This is brought out for 
instance by the Indian understanding of what an upapatti achieves. Gaõeśa Daivajña 
declares in his preface to Buddhivilāsinī that: 

                                                 
28Both quotations cited in Reuben Hersh, Some Proposals for Reviving the Philosophy of 
Mathematics, Adv. Math. 31,31-50,1979.  
29 Philips J. Davis and Reuben Hersh, The Mathematical Experience, Boston 1981, p.325 
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Vyaktevā’vyaktasa§jñe yaduditamakhila§ nopapatti§ vinā tan- 

 nirbhrānto vā çte tā§ sugaõakasadasi prauóhatā§ naiti cāyam 
 pratyakùa§ dçśyate sā karatalakalitādarśavat suprasannā 

tasmādagryopapatti§ nigaditumakhilam utsahe buddhivçddhyai:30 
 
Whatever is stated in the vyakta or avyakta branches of mathematics, 
without upapatti, will not be rendered nir-bhrānta (free from 
confusion); will not have any value in an assembly of mathematicians. 
The upapatti is directly perceivable like a mirror in hand. It is 
therefore, as also for the elevation of the intellect (buddhi-vçddhi), that 
I proceed to enunciate upapattis in entirety. 

  
Thus the purpose of upapatti is: (i) To remove confusion in the interpretation and 
understanding of mathematical results and procedures; and, (ii) To convince the 
community of mathematicians. These purposes are very different from what a ‘proof’ 
in Western tradition of mathematics is supposed to do, which is to establish the 
‘absolute truth’ of a given proposition. 
  
In the Indian tradition, mathematical knowledge is not taken to be different in any 
‘fundamental sense’ from that in natural sciences. The valid means for acquiring 
knowledge in mathematics are the same as in other sciences: Pratyakùa (perception), 
Anumāna (inference), Śabda or Āgama (authentic tradition). Gaõeśa’s statement 
above on the purpose of upapatti follows the earlier statement of Bhāskarācārya-II. In 
the beginning of the golādhyāya of Siddhāntaśiromaõi, Bhāskarācārya says: 
  

madhyādya§ dyusadā§ yadatra gaõitam tasyopapatti§ vinā 
prauóhi§ prauóhasabhāsu naiti gaõako niþsamśayo na svayam 
gole sā vimalā karāmalakavat pratyakùato dçśyate 
tasmādasmyupapattibodhavidhaye golaprabandhodyataþ31 
 
Without the knowledge of upapattis, by merely mastering the gaõita 
(calculational procedures) described here, from the madhyamādhikara 
(the first chapter of Siddhāntaśiromaõi) onwards, of the (motion of the) 
heavenly bodies, a mathematician will not have any value in the 
scholarly assemblies; without the upapattis he himself will not be free 
of doubt (niþsamśaya). Since upapatti is clearly perceivable in the 
(armillary) sphere like a berry in the hand, I therefore begin the 
golādhyāya (section on spherics) to explain the upapattis. 

  
As the commentator Nçsi§ha Daivajña explains, ‘the phala (object) of upapatti is 
pāõóitya (scholarship) and also removal of doubts (for oneself) which would enable 
one to reject wrong interpretations made by others due to bhrānti (confusion) or 
otherwise.’ 32 
                                                 
30 Buddhivilāsinī, cited above, p.3 
31Siddhāntaśiromaõi of Bhāskarācārya with Vāsanābhāùya and Vāsanāvārttika of Nçsi§ha Daivajña,  
Muralidhara Chaturveda (ed.), Varanasi 1981, p.326 
32 Siddhāntaśiromaõi, cited above, p.326 
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In his Vāsanābhāùya on Siddhāntaśiromaõi, Bhāskarācārya refers to the sources of 
valid knowledge (pramāõa) in mathematical astronomy, and declares that  
 

yadyevamucyate gaõitaskandhe upapattimān āgama eva pramāõam33  
  
Whatever is discussed in mathematical astronomy, the pramāõa is 
authentic tradition or established text supported by upapatti.  
 

Upapatti here includes observation. Bhāskarācārya, for instance, says that the upapatti 
for the mean periods of planets involves observations over very long periods. 
  
Upapatti thus serves to derive and clarify the given result or procedure and to 
convince the student. It is not intended to be an approximation to some ideal way of 
establishing the absolute truth of a mathematical result in a formal manner starting 
from a given set of self-evident axioms. Upapattis of Indian mathematics also depend 
on the context and purpose of enquiry, the result to be demonstrated, and the audience 
for whom the upapatti is meant. 
  
An important feature that distinguishes the upapattis of Indian mathematicians is that 
they do not employ the method of proof by contradiction or reductio ad absurdum. 
Sometimes arguments, which are somewhat similar to the proof by contradiction, are 
employed to show the non-existence of an entity, as may be seen from the following 
upapatti given by Kçùõa Daivajña to show that “a negative number has no square 
root”: 
  

The square-root can be obtained only for a square. A negative number 
is not a square. Hence how can we consider its square-root? It might 
however be argued: ‘Why will a negative number not be a square? 
Surely it is not a royal fiat’… Agreed. Let it be stated by you who 
claim that a negative number is a square as to whose square it is; surely 
not of a positive number, for the square of a positive number is always 
positive by the rule… not also of a negative number. Because then also 
the square will be positive by the rule… This being the case, we do not 
see any such number whose square becomes negative…34 

 
Such arguments, known as tarka in Indian logic, are employed only to prove the non-
existence of certain entities, but not for proving the existence of an entity, which 
existence is not demonstrable (at least in principle) by other direct means of 
verification. In rejecting the method of indirect proof as a valid means for establishing 
existence of an entity which existence cannot even in principle be established through 
any direct means of proof, the Indian mathematicians may be seen as adopting what is 
nowadays referred to as the ‘constructivist’ approach to the issue of mathematical 
existence. But the Indian philosophers, logicians, etc., do much more than merely 
disallow certain existence proofs. The general Indian philosophical position is one of 
eliminating from logical discourse all reference to such aprasiddha entities, whose 
                                                 
33Siddhāntaśiromaõi, cited above, p. 30  
34Bījapallavam, cited earlier, p.19. 



 18

existence in not even in principle accessible to all means of verification.35 This 
appears to be also the position adopted by the Indian mathematicians. It is for this 
reason that many an “existence theorem” (where all that is proved is that the non-
existence of a hypothetical entity is incompatible with the accepted set of postulates) 
of Greek or modern Western mathematics would not be considered significant or even 
meaningful by Indian mathematicians. 
  
  
A new epistemology for Mathematics  
 
Mathematics today, rooted as it is in the modern Western tradition, suffers from 
serious limitations. Firstly, there is the problem of ‘foundations’ posed by the ideal 
view of mathematical knowledge as a set of infallible absolute truths. The efforts of 
mathematicians and philosophers of the West to secure for mathematics the status of 
indubitable knowledge has not succeeded; and there is a growing feeling that this goal 
may turn out to be a mirage.  
 
Apart from the problems inherent in the goals set for mathematics, there are also other 
serious inadequacies in the Western epistemology and philosophy of mathematics. 
The ideal view of mathematics as a formal deductive system gives rise to serious 
distortions. Some scholars have argued that this view of mathematics has rendered 
philosophy of mathematics barren and incapable of providing any understanding of 
the actual history of mathematics, the logic of mathematical discovery and, in fact, the 
whole of creative mathematical activity. According one philosopher of mathematics: 
 

Under the present dominance of formalism, the school of mathematical 
philosophy which tends to identify mathematics with its formal 
axiomatic abstraction and the philosophy of mathematics with meta-
mathematics, one is tempted to paraphrase Kant: The history of 
mathematics, lacking the guidance of philosophy, has become blind, 
while the philosophy of mathematics, turning its back on the most 
intriguing phenomena in the history of mathematics has become 
empty… The history of mathematics and the logic of mathematical 
discovery, i.e., the phylogenesis and the ontogenesis of mathematical 
thought, cannot be developed without the criticism and ultimate 
rejection of formalism…36 
 

There is also the inevitable chasm between the ideal notion of infallible mathematical 
proof and the actual proofs that one encounters in standard mathematical practice, as 
portrayed in a recent book: 
  

On the one side, we have real mathematics, with proofs, which are 
established by the ‘consensus of the qualified’. A real proof is not 
checkable by a machine, or even by any mathematician not privy to the 
gestalt, the mode of thought of the particular field of mathematics in 

                                                 
35 For the approach adopted by Indian philosophers to tarka or the method of indirect proof, see the 
preceding article on ‘Indian Approach to Logic’. 
36I. Lakatos, Proofs and Refutations: The Logic of Mathematical Discovery, Cambridge 1976, p.1  



 19

which the proof is located. Even to the ‘qualified reader’ there are 
normally differences of opinion as to whether a real proof (i.e., one that 
is actually spoken or written down) is complete or correct. These 
doubts are resolved by communication and explanation, never by 
transcribing the proof into first order predicate calculus. Once a proof 
is ‘accepted’, the results of the proof are regarded as true (with very 
high probability). It may take generations to detect an error in a 
proof… On the other side, to be distinguished from real mathematics, 
we have ‘meta-mathematics’… It portrays a structure of proofs, which 
are indeed infallible ‘in principle’… [The philosophers of mathematics 
seem to claim] that the problem of fallibility in real proofs… has been 
conclusively settled by the presence of a notion of infallible proof in 
meta-mathematics… One wonders how they would justify such a 
claim.37 

 
Apart from the fact that the modern Western epistemology of mathematics fails to 
give an adequate account of the history of mathematics and standard mathematical 
practice, there is also the growing awareness that the ideal of mathematics as a formal 
deductive system has had serious consequences in the teaching of mathematics. The 
formal deductive format adopted in mathematics books and articles greatly hampers 
understanding and leaves the student with no clear idea of what is being talked about. 
 
Notwithstanding all these critiques, it is not likely that, within the Western 
philosophical tradition, any radically different epistemology of mathematics will 
emerge and so the driving force for modern mathematics is likely to continue to be a 
search for absolute truths and modes of establishing them, in one form or the other. 
This could lead to ‘progress’ in mathematics, but it would be progress of a rather 
limited kind. 
 
If there is a major lesson to be learnt from the historical development of mathematics, 
it is perhaps that the development of mathematics in the Greco-European tradition was 
seriously impeded by its adherence to the cannon of ideal mathematics as laid down 
by the Greeks. In fact, it is now clearly recognised that the development of 
mathematical analysis in the Western tradition became possible only when this ideal 
was given up during the heydays of the development of “infinitesimal calculus” 
during 16th and 18th centuries. As one historian of mathematics notes: 
 

It is somewhat paradoxical that this principal shortcoming of Greek 
mathematics stemmed directly from its principal virtue–the insistence 
on absolute logical rigour…Although the Greek bequest of deductive 
rigour is the distinguishing feature of modern mathematics, it is 
arguable that, had all the succeeding  generations also refused to use 
real numbers and limits until they fully understood them, the calculus 
might never have been developed and mathematics might now be a 
dead and forgotten science. 38 
 

                                                 
37Philip J. Davis and Reuben Hersh, 1981, cited earlier, p.354-5  
38 C.H. Edwards, History of Calculus,  New York 1979, p.79 
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It is of course true that the Greek ideal has gotten reinstated at the heart of 
mathematics during the last two centuries, but it seems that most of the foundational 
problems of mathematics can also be perhaps traced to the same development. In this 
context, study of alternative epistemologies such as that developed in the Indian 
tradition of mathematics, could prove to be of great significance for the future of 
mathematics.   
 
 

V. THE NATURE OF MATHEMATICAL OBJECTS 
 
Another important foundational issue in mathematics is that concerning the nature of 
mathematical objects. Here again the philosophical foundations of contemporary 
mathematics are unsatisfactory, with none of the major schools of thought, namely 
Platonism, Formalism or Intuitionism, offering a satisfactory account of the nature of 
mathematical objects (such as numbers) and their relation to other objects in the 
universe. 
 
In the Indian tradition, the ontological status of mathematical objects such as numbers 
and their relation to other entities of the world was investigated in depth by the 
different schools of Indian philosophy. In the Western tradition, on the other hand, 
there was no significant discussion on the nature of numbers after the Greek times, till 
the work of Frege in the nineteenth century.39  Recently, many scholars have 
explained that the Nyāya theory of numbers is indeed a highly sophisticated one, and 
may even prove in some respects superior to Frege’s theory or the later developments, 
which have followed from it.40 

 
In Nyāya-vaiśeùika ontology, sa§khyā or number-property is assigned to the category 
guõa (usually translated as quality) which resides in dravya (translated as substance) 
by the relation of samavāya (translated as inherence). A sa§khyā such as dvitva (two-
ness or duality) is related to each of the objects of a pair by samavāya, and gives raise 
to the jñāna or cognition: ‘aya§ dvitvavān: This (one) is (a) locus of two-ness’. Apart 
from this, the number-property, dvitva (two-ness) is related to both the objects 
together by a relation called paryāpti (completion) and gives rise to the cognition 
‘imau dvau: These are two’. So according to Nyāya, there are two ways in which 
number-properties such as one-ness or unity, two-ness or duality, three-ness, etc., are 

                                                 
39 Ironically, Frege himself laid the blame for the unsatisfactory character of arithmetic that prevailed 
in his times and earlier, to the fact that its method and concepts originated in India: “After deserting for 
a time the old Euclidean standards of rigour, mathematics, is now returning to them, and even making 
efforts to go beyond them. In arithmetic, if only because many of its methods and concepts originated in 
India, it has been the tradition to reason less strictly than in geometry which was in the main developed 
by the Greeks.”( G. Frege, Foundations of Arithmetic (original German edition, Bresslau 1884), Eng. tr. 
J. L. Austin, Oxford 1956, p.1e) 
40See, for instance, D. H. H. Ingalls, Materials for the study of Navya-Nyāya Logic, Harvard 1951; D. 
C. Guha, Navya-Nyāya System of Logic, Varanasi 1979; J. L. Shaw, ‘Number: From Nyāya to Frege-
Russel’, Studia Logica, 41, 283-291, 1981; Roy W. Perret, ‘A Note on the Navya-Nyāya Account of 
Number’, Jour. Ind. Phil. 15,  227-234, 1985; B. K. Matilal, ‘On the Theory of Number and Paryāpti in 
Navya-Nyāya’, J.A.S.B, 28, 13-21, 1985; J.Ganeri, ‘Numbers as Properties of Objects: Frege and the 
Nyāya’, Stud. in Hum. and Soc. Sc. 3, 111-121, 1996.   
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related to a group of things numbered−firstly by the samavāya relation with each thing 
and secondly by the paryāpti relation with all the things together. 
  
The paryāpti relation, connecting the number-property to the numbered things 
together, is taken by the Naiyāyikas to be a svarūpa-sa§bandha, where the two terms 
of the relation are identified ontologically. Thus, any number property such as two-
ness is not unique; there are indeed several “two-nesses”, there being a distinct two-
ness associated (and identified) with every pair of objects. There are also the 
universals such as dvitvatva (“two-ness-ness”), which inhere in each particular two-
ness. 
  
The Naiyāyika theory of number and paryāpti was developed during 16th-19th 
centuries, in the context of developments in logic. The fact that the Naiyāyikas employ 
the relation of paryāpti by which number-property such as two-ness resides in both 
the numbered objects together and not in each one of them, has led various scholars to 
compare the Nyāya formulation with Frege’s theory of numbers. According to 
Bertrand Russell’s version of this theory, there is a unique number two, which is the 
set of all sets of two elements (or set of all pairs of objects). Thus the number two is a 
set of ‘second-order’, somewhat analogous to the universal “two-ness-ness” 
(dvitvatva) of the Naiyāyikas. 
  
The Naiyāyika theory, however, differs from the modern Western formulations in that 
the Naiyāyikas employ the concept of property (guõa), which has a clearly specified 
ontological status, and avoid notions such as ‘sets’ whose ontology is dubious. Any 
number-property such as two-ness associated with a pair of objects is ontologically 
identified with the pair, or both the objects together, and not with any ‘set’ (let alone 
the set of all sets) constituted by such a pair. 
  
 
Apart from their theory of numbers, the general approach of the Indian logicians is 
what may be referred to as ‘intentional’, as opposed to the ‘extensional’ approach of 
most of Western logic and mathematics. Indian logicians have built a powerful system 
of logic, which is able to handle properties as they are (with both their intentions and 
extensions) and not by reducing them to classes (which are pure extensions, with the 
intentions being abstracted away); perhaps it can also help in clarifying the nature of 
mathematical objects and mathematical knowledge. 
 
It is widely accepted that: 
  

Mathematics, as it exists today, is extensional rather than intentional. 
By this we mean that, when a propositional function enters into a 
mathematical theory, it is usually the extension of the function (i.e., the 
totality of entities or sets of entities that satisfy it) rather than its 
intention (i.e., its “context” or meaning) that really matters. This 
leaning towards extensionality is reflected in a preference for the 
language of classes or sets over the formally equivalent language of 
predicates with a single argument…41 

                                                 
41G. T. Kneebone, Mathematical Logic and the Foundations of Mathematics, London 1963, p.117  
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If the elementary propositions of the theory are of the form F(x) (“x has F”, where F is 
the predicate with a single argument x which runs over a domain of ‘individuals’), 
then it is but a matter of preference whether we use the language of predicates or of 
classes; each predicate corresponds to the class of all those individuals which satisfy 
the corresponding predicate. However the elementary propositions of Indian logic are 
of the form xRy, which relate any two ‘entities’ (not necessarily ‘individuals’) x, y by a 
relation R. The elementary proposition in Indian logic is always composed of a viśeùya 
(qualificand x), viśeùaõa or prakāra (qualifier y) and a sa§sarga (relation R). Here y 
may also be considered as a dharma (property) residing in x by the relation R. Using 
these and other notions, Indian logicians developed a precise technical language, 
based on Sanskrit, which is unambiguous and makes transparent the logical structure 
of any (complex) proposition and which is used in some sense like the symbolic 
formal languages of modern mathematical logic.42 
  
The dominant view, concerning the nature of mathematics today, is essentially that 
adopted by Bourbaki: 
  

Mathematics is understood by Bourbaki as a study of structures, or 
systematic of relations, each particular structure being characterised by 
a suitable set of axioms. In mathematics, as it exists at the present time, 
there are three great families of structures… namely algebraic 
structures, topological structures and ordinal structures. Any particular 
structure is to be thought of as inhering in a certain set...which 
functions as a domain of individuals for the corresponding theory.43 
  

Bourbaki presents the whole of mathematics as an extension of the theory of sets. But 
if the study of abstract structures is indeed the goal of mathematics, there is no reason 
why this enterprise should necessarily be based on the theory of sets, unless one does 
not have the appropriate logical apparatus to handle philosophically better founded 
concepts such as properties, relations etc. The endeavour of the Indian logicians was 
to develop such a logical apparatus. This apparatus seems highly powerful and 
relevant for evolving a sounder theory of mathematical structures. 
  

                                                 
42See for instance the previous article on ‘Indian Approach to Logic’.  
43G. T. Kneebone, cited earlier, p.326  
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APPENDIX I: LIST OF WORKS CONTAINING UPAPATTIS 
 
The following are some of the important commentaries available in print, which 
present upapattis of results and procedures in mathematics and astronomy: 
 
1. Bhāùya of Bhāskara I (c.629) on Āryabhañīya of Āryabhaña (c.499), K.S.Shukla 

(ed.), New Delhi 1975. 
2. Bhāùya of Govindasvāmin (c.800) on Mahābhāskarīya of Bhāskara I (c.629), T. S. 

Kuppanna Sastri (ed.), Madras 1957. 
3. Vāsanābhāùya of Caturveda Pçthūdakasvāmin (c.860) on Brahmasphuñasiddhānta 

of Brahmagupta (c.628), Chs. I-III, XXI, Ramaswarup Sharma (ed.), New Delhi 
1966; Ch XXI, Edited and Translated by Setsuro Ikeyama, Ind. Jour Hist. Sc. Vol. 
38, 2003. 

4. Vivaraõa of Bhāskarācārya II (c.1150) on Śiùyadhīvçddhidātantra of Lalla (c.748), 
Chandrabhanu Pandey (ed.), Varanasi 1981. 

5. Vāsanā of Bhāskarācārya II (c.1150) on his own Bījagaõita, Jivananda Vidyasagara 
(ed.), Calcutta 1878; Achyutananda Jha (ed.), Varanasi 1949, Rep. 1994.  

6. Mitākùarā or Vāsanā of Bhāskarācārya II (c.1150) on his own Siddhāntaśiromaõi, 
Bapudeva Sastrin (ed.) Varanasi 1866; Muralidhara Chaturveda (ed.), Varanasi 
1981. 

7. Vāsanābhāùya of Āmarāja (c.1200) on Khaõóakhādyaka of Brahmagupta (c.665), 
Babuaji Misra (ed.), Calcutta 1925. 

8. Gaõitabhūùaõa of Makkībhañña (c.1377) on Siddhāntaśekhara of Śrīpati (c.1039), 
Chs. I – III,   Babuaji Misra (ed.), Calcutta 1932 

9. Siddhāntadīpikā of Parameśvara (c.1431) on the Bhāùya of Govindasvāmin (c.800) 
on Mahābhāskarīya of Bhāskara I (c.629), T. S. Kuppanna Sastri (ed.), Madras 
1957. 

10.Āryabhañīyabhāùya of Nīlakaõñha Somasutvan (c.1501) on Āryabhañīya of 
Āryabhaña, K. Sambasiva Sastri (ed.), 3 Vols., Trivandrum 1931, 1932, 1957. 

11.Yuktibhāùā (in Malayalam) of Jyeùñhadeva (c.1530); Gaõitādhyaya, Ramavarma 
Thampuran and A.R. Akhileswara Aiyer (eds.), Trichur 1947; K. Chandrasekharan 
(ed.), Madras 1953; Edited, along with an ancient Sanskrit version 
Gaõitayuktibhāùā and English Translation, by K.V.Sarma (in Press). 

12.Yuktidīpikā of Śaïkara Vāriyar (c.1530) on Tantrasaïgraha of Nīlakaõñha 
Somasutvan (c.1500), K.V. Sarma (ed.), Hoshiarpur 1977. 

13.Kriyākramakarī of Śaïkara Vāriyar (c.1535) on Līlāvatī of Bhāskarācārya II 
(c.1150), K.V. Sarma (ed.), Hoshiarpur 1975. 

14.Sūryaprakāśa of Sūryadāsa (c.1538) on Bhāskarācārya’s Bījagaõita (c.1150), Chs. 
I – V, Edited and translated by Pushpa Kumari Jain, Vadodara 2001.  

15.Buddhivilāsinī of Gaõeśa Daivajña (c.1545) on Līlāvatī of Bhāskarācārya II 
(c.1150), V.G. Apte (ed.), 2 Vols, Pune 1937. 

16.òīkā of Mallāri (c.1550) on Grahalāghava of Gaõeśa Daivajña (c.1520), 
Bhalachandra (ed.), Varanasi 1865; Kedaradatta Joshi (ed.), Varanasi 1981. 

17.Bījanavāïkurā or Bījapallavam of Kçùõa Daivajña (c.1600) on Bījagaõita of 
Bhāskarācārya II (c.1150); V. G. Apte (ed.), Pune 1930; T. V. Radha Krishna 
Sastry (ed.), Tanjore 1958; Biharilal Vasistha (ed.), Jammu 1982. 

18.Śiromaõiprakāśa of Gaõeśa (c.1600) on Siddhāntaśiromaõi of Bhāskarācārya II 
(c.1150), Grahagaõitādhyaya, V. G. Apte (ed.), 2 Vols. Pune 1939, 1941. 
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19.Gūóhārthaprakāśa of Raïganātha (c.1603) on Sūryasiddhānta, Jivananda 
Vidyasagara (ed.), Calcutta 1891; Reprint, Varanasi 1990. 

20.Vāsanāvārttika, commentary of Nçsi§ha Daivajña (c.1621) on Vāsanābhāùya of 
Bhāskarācārya II, on his own Siddhāntaśiromaõi (c.1150), Muralidhara Chaturveda 
(ed.), Varanasi 1981. 

21.Marīci of Munīśvara (c.1630) on Siddhāntaśiromaõi of Bhāskarācārya (c.1150), 
Madhyamādhikara,  Muralidhara Jha (ed.), Varanasi 1908; Grahagaõitādhyaya, 
Kedaradatta Joshi (ed.),  2 vols. Varanasi 1964; Golādhyāya, Kedaradatta Joshi 
(ed.), Delhi 1988. 

22.Āśayaprakāśa of Munīśvara (c.1646) on his own Siddhāntasārvabhauma, 
Gaõitādhyaya Chs. I-II,  Muralidhara Thakura (ed.), 2 Vols, Varanasi 1932, 1935; 
Chs. III-IX, Mithalal Ojha (ed.), Varanasi 1978. 

23.Śeùavāsanā of Kamalākarabhañña (c.1658) on his own Siddhāntatattvaviveka, 
Sudhakara Dvivedi (ed.), Varanasi1885; Reprint, Varanasi 1991. 

24.Sauravāsanā of Kamalākarabhañña (c.1658) on Sūryasiddhānta, Chs. I-X, 
Srichandra Pandeya (ed.), Varanasi 1991. 

25.Gaõitayuktayaþ, Tracts on Rationale in Mathematical Astronomy by various 
Kerala Astronomers (c.16th-19th century), K.V. Sarma, Hoshiarpur 1979. 
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APPENDIX II: UPAPATTI OF THE KUòòòòAKA PROCESS 
  
The kuññaka process  
 
The kuññaka process for solving linear indeterminate equations has been known to 
Indian mathematicians at least since the time of Āryabhaña (c.499 AD). Consider the 
first order indeterminate equation of the form  
 

(ax ± c)/b = y  
 
Here a, b, c are given positive integers, and the problem is to find integral values of x, 
y that satisfy the above equation; a is called the bhājya (dividend), b the bhājaka or 
hāra (divisor), c the kùepa (interpolator). The kùepa is said to be dhana (additive) or 
çõa (subtractive) depending on whether the ‘plus’ or ‘minus’ sign is taken in the 
above equation. The numbers to be found, x, is called the guõaka (multiplier) and y 
the labdhi (quotient). 
  
The process of solution of the above equation is referred to as the kuññaka process. 
kuññaka or kuññākāra (translated as ‘pulveriser’) is the name for the guõaka (multiplier) 
x. Kçùõa Daivajña explains: 
 

Kuññaka is the guõaka; for, multiplication is referred to by terms (such 
as hanana, vadha, ghāta, etc.), which have connotation of “injuring”, 
“killing” etc. By etymology and usage (yogarūóhi), this term (kuññaka) 
refers to a special multiplier. That number, which when multiplied by 
the given bhājya and augmented or diminished by the given kùepa and 
divided by the given hāra, leaves no reminder, is called the kuññaka by 
the ancients. 44 

  
The procedure for solution of the above equation is explained as follows by 
Bhāskarācārya in his Bījagaõita; the relevant verses are 1-5 of the Kuññakādhyāya:45 
  
1. In the first instance, as preparatory to carrying out the kuññaka process (or for 

finding the kuññaka), the bhājya, hāra and kùepa are to be factored by whatever 
number possible. If a number, which divides both the bhājya and hāra, does not 
divide the kùepa, then the problem is an ill-posed problem. 

 
2. When the bhājya and hāra are mutually divided, the last remainder is their 

apavartana or apavarta (greatest common factor). The bhājya and hāra after 
being divided by that apavarta will be characterised as dçóha (firm or reduced) 
bhājya and hāra. 

 
3. Divide mutually the dçóha-bhājya and hāra, until unity becomes the remainder in 

the dividend. Place the quotients [of this mutual division] one below the other, the 
kùepa below them and finally zero at the bottom. 

 
                                                 
44 Bījapallavam commentary on Bījagaõita, cited above, p.86. 
45 Bījapallavam commentary on Bījagaõita, cited above, p.86-89. 
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4.  [In this vallī] the number just above the penultimate number is replaced by the 
product of that number with the penultimate number, with the last number added 
to it. Then remove the last term. Repeat the operation till only a pair of numbers is 
left. The upper one of these is divided [abraded] by the dçóha-bhājya, the 
remainder is the labdhi. The other (or lower) one being similarly treated with the 
(dçóha) hāra gives the guõa. 

 
5. This is the operation when the number of quotients [in the mutual division of 

dçóha-bhājya and dçóha-hāra] is even. If the number of quotients be odd then the 
labdhi and guõa obtained this way should be subtracted from their abraders 
(dçóha-bhājya and dçóha-hāra respectively) to obtain the actual labdhi and guõa. 

 
 
An Example 
 
Let us explain the above procedure with an example that also occurs later in the 
upapatti provided by Kçùõa Daivajña. 
  
Let bhājya be 1211, hāra 497 and kùepa 
21. The procedure above outlined is for 
additive kùepa and the equation we have 
to solve is 1211x+21 = 497y. The first 
step is to make bhājya and hāra mutually 
prime to each other (dçóha) by dividing 
them by their greatest common factor 
(apavartāïka). The apavartāïka is found 
by the process of mutual division (the so-
called Euclidian algorithm) to be 7. Now 
dividing bhājya, hāra and kùepa by this 
apavartāïka, we get the dçóha-bhājya, 
hāra and kùepa to be 173, 71 and 3 
respectively. Thus, the problem is 
reduced to the solution of the equation 
173x+3 = 71y. 
 
Now by mutually dividing the dçóha-
bhājya and hāra, the vallī of quotients 
(which are the same as before) is formed, 
below which are set the kùepa 3 and zero. 
Following the procedure stated (in verse 
4, above) we get the two numbers 117, 
48. Now since the number of quotients is 
even, we need to follow the procedure (of 
verse 4 above) and get the labdhi, y = 117 
and the guõa, x = 48.  

   
 
     497)1211(2 
              994 
              217)497(2 
                     434 
                       63)217(3 
                            189 
                              28)63(2 
                                   56 
                                     7)28(4 
                                        28 
                                          0 
 
 
 
 
  2      2      2      2     117 
  2      2      2     48      48    48x2+21=117 
  3      3     21    21                 21x2+6=48 
  2      6      6                           3x6+3=21   
  3      3                                    2x3+0=6 
  0 
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Now we shall present the upapatti of the above process as expounded by Kçùõa 
Daivajña in his commentary on Bījagaõita. For convenience of understanding we 
divide this long proof into several steps. 
  
Proof of the fact that when the bhājya, hāra, and kùepa are factored by the same 
number, there is no change in the labdhi and guõa 46 
  
It is well known that whatever is the quotient (labdhi) of a given dividend and divisor, 
the same will be the quotient if both the dividend and divisor are multiplied or 
factored by the same number. In the present case, the given bhājya multiplied by some 
guõaka and added with the positive or negative kùepa is the dividend. The divisor is 
the given hāra. Now the dividend consists of two parts. The given bhājya multiplied 
by the guõaka is one and the kùepa is the other. If their sum is the dividend and if the 
dividend and divisor are both factored by the same number then there is no change in 
the labdhi. Therefore, that factor from which the divisor is factored, by the same 
factor is the dividend, which is resolvable into two parts, is also to be factored. Now 
the result is the same whether we factor the two parts and add or add the two parts and 
then factor the sum. Just as, if the dividend 27 is factored by 3 we get 9; alternatively 
the dividend is resolved into the parts 9, 18 which when factored by 3 give 3,6 and 
these when added gives the same factored dividend, viz., 9. In the same way in other 
instances also, if the dividend is resolved into two or many parts and these are 
factored and added, then the result will be the same as the factored dividend. 
  
Therefore, when we factor the given hāra, then the given bhājya multiplied by the 
guõa should also be factored and so also the kùepa. Now guõa being not known, the 
given bhājya multiplied by the guõa will be another unknown, whose factoring is not 
possible; still, if the given bhājya is factored and then multiplied by the guõa, then we 
get the same result as factoring that part of the dividend which is gotten by 
multiplying the given bhājya by guõa. For, it does not make a difference whether we 
factor first and then multiply or whether we multiply first and then factor. Thus, just 
as the given bhājya multiplied by the guõa will become one part in the resolution of 
the dividend, in the same way the factored bhājya multiplied by the same guõa will 
become one part in the resolution of the factored dividend. The factored kùepa will be 
the second part. In this manner, the bhājya, hāra and kùepa all un-factored or factored 
will lead to no difference in the guõa and labdhi, and hence for the sake of laghava 
(felicity of computation) it is said that ‘the bhājya, hāra and kùepa have to be 
factored…[verse 1]’. We will discuss whether the factoring is necessary or not while 
presenting the upapatti of ‘Divide-mutually the dçóha-bhājya and hāra... [verse 3]’. 
  
  
Proof of the fact that if a number, which divides both bhājya and hāra, does not divide 
the kùepa, then the problem is ill-posed47 
  
Now the upapatti of khilatva or ill-posed-ness: Here, when the divisor and dividend 
are factored, even though there is no difference in the quotient, there is always a 

                                                 
46Bījapallavam commentary on Bījagaõita, cited above, p.89-90.  
47Bījapallavam commentary on Bījagaõita, cited above, p. 90-91.  
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change in the remainder. The remainder obtained when (divisor and dividend) are 
factored, if multiplied by the factor, will give us the remainder for the original (un-
factored) divisor and dividend. For instance, let the dividend and divisor be 21, 15; 
these factored by 3 give 7, 5. Now if the dividends are multiplied by 1 and divided by 
the respective divisors, the remainders are 6, 2; when dividends are multiplied by 2 
the remainders are 12, 4; when multiplied by 3 they are 3, 1; when multiplied by 4 
they are 9, 3; when multiplied by 5, they are 0, 0. If we multiply by 6, 7 etc. we get 
back the same sequence of remainders. Therefore, if we consider the factored divisor, 
5, the remainders are 0, 1, 2, 3, 4 and none other than these. If we consider the un-
factored divisor 15, the remainders are 0, 3, 6, 9, 12 and none other than these. Here, 
all the remainders have the common factor 3. 
  
Now, let us consider the kùepa. When the guõaka (of the given bhājya) is such that we 
have zero remainder (when divided by the given hāra), then (with kùepa) we will have 
zero remainder only when the kùepa is zero or a multiple of hāra by one, two, etc., 
and not for any other kùepa … For all other guõakas which leave other remainders, 
(when multiplied by bhājya and divided by hāra) then (with kùepa) we have zero 
remainder when kùepa is equal to the śeùa (remainder) or hāra diminished by śeùa, 
depending on whether kùepa is additive or subtractive and not for any other kùepa, 
unless it is obtained from the above by adding hāra multiplied by one, two, etc. Thus, 
in either case of kùepa being equal to the śeùa or hāra diminished by the śeùa, since 
kùepa will be included in the class of śeùas discussed in the earlier paragraph, the 
kùepa will have the same apavarta or factor (that bhājya and hāra have). This will 
continue to be the case when we add any multiple of hāra to the kùepa. Thus we do 
not see any such kùepa which is not factorable by the common factor of the bhājya 
and hāra. Therefore, when the kùepa is not factorable in this way, with such a kùepa a 
zero remainder can never be obtained (when bhājya is multiplied by any guõa and 
divided by hāra after adding or subtracting the kùepa to the above product); because 
the kùepas that can lead to zero remainder are restricted as discussed above. With no 
more ado, it is indeed correctly said that the problem itself is ill-posed when the kùepa 
is not divisible by the common factor of bhājya and hāra. 
  
  
Rationale for the procedure for finding apavartāïka – the greatest common factor48 
  
Now the rationale for the procedure for finding the apavartāïka (greatest common 
factor). Here the apavartāïka is to be understood as the factor such that when the 
divisor and dividend are factored by this, no further factorisation is possible. That is 
why they are said to be dçóha (firm, prime to each other) when factored by this 
apavartāïka. Now the procedure for finding that: When dividend and divisor are 
equal, the greatest common factor (G.C.F.) is equal to them as is clear even to the 
dull-witted. Only when they are different will this issue become worthy of 
investigation. Now consider 221, 195. Between them the smaller is 195 and the 
G.C.F. being its divisor cannot be larger than that. The G.C.F. will be equal to the 
smaller if the larger number is divisible by the smaller number, i.e., leaves no 
remainder when divided. When the remainder is 26, then the G.C.F. cannot be equal 
to the smaller number 195, but will be smaller than that. Now let us look into that.  
                                                 
48Bījapallavam commentary on Bījagaõita, cited above, p.91-92.  
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The larger number 221 is resolvable into two parts; one part is 195 which is divisible 
by the smaller number and another part is 26, the remainder. Now among numbers 
less than the smaller number 195, any number which is larger than the remainder 26, 
cannot be the G.C.F.; for, the G.C.F. will have to divide both parts to which the large 
number 221 is resolved. Now the remainder part 26, itself, will be the G.C.F., if the 
smaller number 195 were divisible by 26. As it is not, the G.C.F. is smaller than the 
remainder 26. Now let us enquire further. 
  
The smaller number 195 is resolvable into two parts; 182 which is divisible by the 
first remainder 26 and the second remainder 13. Now, if a number between the earlier 
remainder 26 and the second remainder 13 is a G.C.F., then that will have to somehow 
divide 26, and hence the part 182; but there is no way in which such a number can 
divide the other part 13 and hence it will not divide the smaller number 195. 
  
Thus, among numbers less than the first remainder 26, the G.C.F.  can be at most 
equal to the second remainder 13. That too only if when the first remainder 26 is 
divided by the second remainder 13 there is no remainder… Now when the first 
remainder divided by the second remainder leaves a (third) remainder, then by the 
same argument, the G.C.F. can at most be equal to the third remainder. And, by the 
same upapatti, when it happens that the previous remainder is divisible by the 
succeeding remainder then that remainder is the greatest common factor. Thus is 
proved “When bhājya and hāra are mutually divided, the last (non-zero) remainder is 
their apavarta… (verse 2)”. 
  
 
Rationale for the kuññaka process when the kùepa is zero49 
  
When there is no kùepa, if the bhājya is multiplied by zero and divided by hāra there 
is no remainder and hence zero itself is both guõa and labdhi; or if we take guõa to be 
equal to hāra, then since hāra is divisible by hāra we get labdhi equal to bhājya. 
Therefore, when there is no kùepa, then zero or any multiple of hāra by a desired 
number will be the guõa and zero or the bhājya multiplied by the desired number will 
be the labdhi. Thus here, if the guõa is increased by an amount equal to hāra then the 
labdhi will invariably be increased by an amount equal to bhājya … 
  
Now even when the kùepa is non-zero, if it be equal to hāra or a multiple of hāra by 
two, three, etc. then the guõa will be zero, etc. as was stated before. For, with such a 
guõa, there will be a remainder (when divided by hāra) only because of kùepa. But if 
kùepa is also a multiple of hāra by one, two, etc. how can there arise a remainder? 
Thus for such a kùepa, the guõa is as stated before. In the labdhi there will be an 
increase or decrease by an amount equal to the quotient obtained when the kùepa is 
divided by hāra, depending on whether kùepa is positive or negative… 
  
  

                                                 
49Bījapallavam commentary on Bījagaõita, cited above, p.92-93.  
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Rationale for the kuññaka process when kùepa is non-zero50 
  
Now when the kùepa is otherwise: The upapatti is via resolving the bhājya into two 
parts. The part divisible by hāra is one. The remainder is the other. When bhājya and 
hāra are 16, 7 the parts of bhājya as stated are 14, 2. Now since the first part is 
divisible by hāra, if it is multiplied by any guõa it will still be divisible by hāra. Now 
if the given kùepa when divided by the second part leaves no remainder, then the 
quotient obtained in this division is the guõa (in case the kùepa is subtractive). For, 
when this guõa multiplies the second part of bhājya and kùepa is subtracted then we 
get zero. Now if the kùepa is not divisible by the second part, then it is not simple to 
find the guõa and we have to take recourse to other procedure. 
  
When the bhājya is divided by hāra, if 1 is the remainder, then the second part is also 
1 only. Then whatever be the kùepa, if this remainder is multiplied by kùepa we get 
back the kùepa and so we can apply the above procedure and guõa will be equal to 
kùepa, when kùepa is subtractive, and equal to hāra diminished by kùepa, when the 
kùepa is additive. In the latter case, when the guõa multiplies the second part of 
bhājya we get hāra diminished by kùepa. When we add kùepa to this we get hāra, 
which is trivially divisible by hāra. The labdhi will be the quotient, obtained while 
bhājya is divided by hāra, multiplied by guõa in the case of subtractive kùepa and this 
augmented by 1 in the case of additive kùepa. 
  
Now when bhājya is divided by hāra the remainder is not 1, then the procedure to find 
the guõa is more complicated. Now take the remainder obtained in the division of 
bhājya by hāra as the divisor and hāra as the dividend. Now also if 1 is not the 
remainder then the procedure for finding the guõa is yet more difficult. Now divide 
the first remainder by the second remainder. If the remainder is 1, then if the first 
remainder is taken as the bhājya and the second remainder is hāra, we can use the 
above procedure to get the guõa as kùepa or hāra diminished by kùepa, depending on 
whether the kùepa is additive or subtractive. But if the remainder is larger than 1 even 
at this stage, then the procedure to find guõa is even more complicated. Therefore 
when we go on doing mutual division, we want to arrive at remainder 1 at some stage. 
But how can that be possible if bhājya and hāra have a common factor, for the 
ultimate remainder in mutual division is the greatest common factor. Now if we factor 
the bhājya and hāra by the apavartāïka (greatest common factor) then the remainders 
will also factored by that, and the final remainder will be unity. This is why it is 
necessary to first reduce both bhājya and hāra by their greatest common factor. 
  
Now, even when the penultimate remainder considered as a bhājya gives unity as the 
remainder when divided by the next remainder (considered as hāra) and from that a 
corresponding guõa can be obtained, how really is one to find the guõa appropriate to 
the originally specified bhājya. That is to be found by vyasta-vidhi, the reverse process 
or the process of working backwards. Now let the bhājya be 1211, hāra 497 and kùepa 
21. If bhājya and hāra are mutually divided, the final remainder (or their G.C.F.) is 7. 
Factoring by this, the reduced bhājya, hāra and kùepa  are 173, 71 and 3 respectively. 
Now by mutual division of these dçóha-bhājya and hāra, we get the vallī (sequence) 

                                                 
50Bījapallavam commentary on Bījagaõita, cited above, p.93-98.  



 31

of quotients 2, 2, 3, 2 and remainders 31, 9, 4, 1 and the various bhājyas and hāras as 
follows: 

 
bhājya   173  71  31  9 
hāra      71  31     9   4 

  
Now in the last bhājya 9, there are two parts: 8 which is 
divisible by hāra 4 and remainder 1. Using the procedure 
stated above, the guõa will be the same as the kùepa 3, for the 
case of subtractive kùepa. The quotient 2 (of the division of the 
last bhājya 9 by the hāra 4) multiplied by this guõa 3 will give 
the labdhi 6. It is for this reason it is said that, “place the 
quotients one blow the other, the kùepa below them and finally 
zero at the bottom… (verse 3).” Here the “last quotient 
multiplied by below… (verse 4)” gives (the changed vallī as 
shown): 

2 
2 
3 
2 
3  kùepa 
0 
 
2 
2 
3 
6    labdhi
3    guõa 

 
Now keeping the same kùepa, we will discuss what will be the guõa for the earlier pair 
of bhājya and hāra (given by) 31, 9. Here also the parts (to which the bhājya is to be 
resolved) as stated above are 27, 4. Now the first part, whatever be the number it is 
multiplied by, is divisible by hāra. Thus it is appropriate to look at the second part 
while considering the guõa and labdhi. Thus we have the pair of bhājya and hāra 4, 9. 
This is only the previous pair (of 9, 4) considered with the bhājya and hāra 
interchanged and this leads to an interchange of the guõa and labdhi also. This can be 
seen as follows.  
 
The bhājya 9, multiplied by guõa 3 leads to 27 (and this) diminished 
by kùepa 3 gives 24 (and this) divided by hāra 4 gives the labdhi 6. 
Now by inverse process, this labdhi 6 used as a guõa of the new 
bhājya 4, gives 24 (and this) augmented by kùepa 3 gives 27 (and this) 
is divisible by the new hāra 9; and hence 6, the labdhi for the last pair 
(of bhājya and hāra) is the guõa for the present. The labdhi
(considering the second part alone) is 3, the guõa for the last pair. But 
for the given bhājya (31), the labdhi for the earlier part (27) 
multiplied by the guõa is to be added. The guõa is the penultimate 
entry (6) in the vallī. The labdhi for the first part is the quotient (3) set 
down above that. And these two when multiplied will give the labdhi
(18) for the first part. This is to be added to the labdhi for the second 
part which is 3 the last entry in the vallī. Thus we get the new vallī. 

 
The last entry 3 is no long relevant and omitting that we get the vallī.
So it is said “multiply the penultimate number by the number just
above and add the earlier term. Then reject the lowest… (verse 4)”.
Thus for the pair 31, 9 we have obtained by the inverse process
(vyasta-vidhi) the labdhi and guõa 21, 6 for additive (kùepa). 
  
 

   
             2  
             2   
             3 
             6 guõa 
             3 labdhi 
 
   
             2 

  2 
21 labdhi
  6 guõa 
  3 labdhi
 
 
  2 
  2 
21 labdhi 
  6  guõa 
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Now for the still earlier pair of bhājya and hāra, namely 71, 31 and with the same 
kùepa, let us enquire about the guõa. Here again (the bhājya is divided into) parts 62, 
9 as stated above, and keeping the first part aside we get the pair of bhājya and hāra, 
9, 31. Again, since we have only interchanged the earlier bhājya and hāra, the same 
should happen to labdhi and guõa. Thus we have as guõa and labdhi 21, 6. Here also 
the labdhi of the first part is to be multiplied by the guõa. The penultimate entry in the 
vallī, 21, which is now the guõa is multiplied by the 2 which is above it and which is 
the labdhi of the first part (62), and to the result 42 is added the labdhi 6 of the second 
part (9), and thus we get the total labdhi 48. 

 
The last entry of the vallī as shown is removed as before, 
and we get the vallī. Thus by the inverse process we get 
for the pair of bhājya and hāra 71, 31, and for a 
subtractive kùepa, the labdhi and guõa 48, 21. 

 
  2 
48    labdhi 
21   guõa 
     
 

Now the enquiry into the guõa associated with the yet earlier pair of bhājya and hāra, 
173, 71. Here also splitting (the bhājya) into two parts 142, 31 as stated before, we get 
the bhājya and hāra 31, 71. Here again, we only have an interchange of bhājya and 
hāra from what we discussed before and so by interchanging the labdhi and guõa as 
also the (status of additivity or subtractivity of the) kùepa, we get the labdhi and guõa 
21, 48 for additive kùepa. Here again to get the labdhi of the first part, the penultimate 
(entry in the vallī) 48 is multiplied by the entry 2 above it to get 96.  

 
To get the total labdhi, the last entry 21 is added to get 
117. Removing the last entry of the vallī which is no 
longer of use, we get the vallī as shown. 

 
117 labdhi 

48 guõa 
 

Thus for the main (or originally intended) pair of bhājya and hāra 173, 71 and with 
additive kùepa 3, the labdhi and guõa obtained are 117, 48. Therefore it is said 
‘Repeat the operation till only two numbers are left... (verse [4])” 
 
Except for the last bhājya, in all bhājyas, while getting the labdhi for the first part, the 
guõa will be penultimate (in the vallī) and hence it is said that the penultimate is 
multiplied by the number above. That is to be added to the last number which is the 
labdhi for the second part (of the bhājya). For the last bhājya, the last entry is the 
guõa and there is no labdhi for the second part. Hence Ācārya has instructed the 
inclusion of zero below in the end (of the vallī) so that the procedure is the same all 
through. Thus are obtained the labdhi and guõa 117, 48.  
 
Now, it has been seen earlier itself that if we increase guõa by hāra, then labdhi will 
get increased by bhājya; and by the same argument, if the guõa is diminished by hāra, 
the labdhi will get diminished by bhājya. Hence when the guõa is larger than hāra, 
then once, twice or, whatever be the number of times it may be possible, the hāra is to 
be subtracted from that guõa so that a smaller guõa is arrived at. The labdhi is 
(reduced by a multiple of bhājya) in the same way. Hence it is said "The upper one of 
these is divided [abraded] by the dçóha-bhājya, the remainder is the labdhi. The other 
(or lower) one being similarly treated with the (dçóha) hāra gives the guõa (verse 4)" 
(Ācārya) also emphasises the above principle (in a) later (verse of Bījagaõita): "The 
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number of times that the guõa and labdhi are reduced should be the same." If guõa is 
reduced by hāra once, then the labdhi cannot be diminished by twice the bhājya and 
so on. 
 
 
Labdhi and guõa for even and odd number of quotients51 
 
If it were asked how we are to know whether the labdhi and guõa, as derived above 
for the main bhājya,  correspond to additive or subtractive kùepa; for   (it may be said 
that) in the case of the last and penultimate bhājyas, it is not clear whether the guõa is 
for  additive or subractive kùepas, we state as follows. For the last pair of bhājya and 
hāra, the guõa was derived straightaway taking the kùepa to be subtractive. Thus by 
the vyasta-vidhi (inverse process), for the penultimate pair the guõa that we derived 
was for additive kùepa. For the third pair, the guõa that we derived was for subtractive 
kùepa. It would be additive for the fourth and subtractive for the fifth pair. Now 
starting from the last pair, for each even pair, the guõa derived would be for additive 
kùepa and for each odd pair, it would be for subtractive kùepa. Now for the main (or 
originally given) pair of bhājya and hāra, this even or odd nature is characterised by 
the even or odd nature of the number of quotients in their mutual division. Hence, if 
the number of quotients is even, then the labdhi, guõa derived are for additive kùepa. 
If they are odd then the labdhi and guõa derived for the main (or originally given) 
bhājya and hāra are for subtractive kùepa. Since the (Ācārya) is going to state a 
separate rule for subtractive kùepa, here we should present the process for additive 
kùepa only. Hence it is said, "what are obtained are (the labdhi and guõa) when the 
quotients are even in number… (verse 5)". 
 
When the number of quotients is odd, the labdhi and guõa that are obtained are those 
valid for subtractive kùepa. But what are required are those for additive kùepa. Hence 
it is said that "If the number of quotients be odd then the labdhi and guõa obtained 
this way should be subtracted from their abraders…(verse 5)." The rationale employed 
here is that the guõa for subtractive kùepa, if diminished from hāra will result in the 
guõa for additive kùepa. 
 
This can also be understood as follows. Any bhājya which on being multiplied by a 
guõa is divisible (without remainder) by its hāra, the same will hold when it is 
multiplied by the (two) parts of the guõa and divided by the hāra. The labdhi will be 
the sum of the quotients.  If there is a reminder when one of the partial products is 
divided by the hāra, the other partial product will be divisible by the hāra when it 
increased by the same remainder - or else the sum of the two partial products will not 
be divisible by the hāra. 
 
Now if the bhājya is multiplied by a guõa equal to hāra and then divided by the hāra 
it is clearly divisible and the labdhi is also the same as bhājya. Since the guõa and 
hāra are the same in this case, the parts of the guõa are the same as that of the hāra. 
For example if bhājya is 17, hāra 15 and guõa is also 15, then bhājya multiplied by 
guõa is 225 and divided by hāra gives labdhi 17. If the two parts of guõa are 1, 14, 

                                                 
51 Bījapallavam commentary on Bījagaõita, cited above, p.98-99. 
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then the partial products are 17, 238. The first, if divided by hāra, leaves remainder 2. 
If we reduce this by the same kùepa of 2, then it will be divisible, and labdhi will be 1. 
The other partial product, if increased by the same kùepa, becomes 240 and will be 
divisible by the hāra. The labdhi will be 16. Or, if the parts of the guõa are 2, 13, the 
partial products are 34, 221. The first when divided by hāra gives the remainder 4, 
and if reduced by that, it becomes 30 and will be divisible by the hāra and labdhi will 
be 2 and the partial guõa 2. The other partial product 221, if increased by the same 
remainder, will be divisible by the hāra and the labdhi will be 15 and the partial guõa 
13. Or, if the parts of the guõa are 3, 12, the partial products will be 51, 204. The first 
one when reduced by 6 and the second when increased by 6, will be divisible. Thus 
for kùepa of 6, the guõas when it is additive and subtractive are respectively the parts 
12, 3. The labdhis are correspondingly 14, 3. 
 
Hence the Ācārya states (later in Bījagaõita) "The guõa and labdhi obtained for 
additive kùepa, when diminished by their abraders, will result in those for negative 
kùepa ". Thus the procedure for arriving at guõa and labdhi as outlined in the text 
starting with "Divide mutually…" and ending with "…to give the actual labdhi and 
guõa " (i.e., verses 3 to 5) has been demonstrated (upapannam). 
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APPENDIX III: MATHEMATICAL TOPICS AND PROOFS IN YUKTIBHĀúĀ (C.1530)  
  
In this Appendix we shall present an outline of the topics and proofs contained in the 
Mathematics part of the celebrated Malayalam text Yuktibhāùā 52 of Jyeùñhadeva 
(c.1530). This part is divided into seven Chapters, of which the last two, entitled 
Paridhi and Vyāsa (Circumference and Diameter) and jyānayanam (Computation of 
Sines), contain many important results concerning infinite series and fast convergent 
approximations for π and the trigonometric functions. In the preamble to his work, 
Jyeùñadeva states that his work closely follows Tantrasaïgraha of Nīlakaõñha (c.1500) 
and gives all the mathematics necessary for the computation of planetary motions. The 
proofs expounded by Jyeùñhadeva have been reproduced (mostly in the form of 
Sanskrit verses–kārikās) by Śaïkara Vāriyar in his commentaries Yuktidīpikā53 on 
Tantrasaïgraha and Kriyākramakarī54 on Līlāvatī. Since the later work is considered 
to be written around 1535 A.D., the time of composition of Yuktibhāùā may 
reasonably be placed around 1530 A.D.  
 
In what follows we shall present an outline of the mathematical topics and proofs 
given in Yuktibhāùā, following closely the order which they appear in the text. 
 
 
I. Parikarmāõi (Mathematical Operations) 
 
Following Tantrasaïgraha an exposition of all the mathematics necessary thereof: 
 
Numbers, place value, the eight operations involving increase and decrease, addition 
and subtraction. 
 
Multiplication: Methods of multiplication, representation of the product as a ghāta-
kùetra (rectangle), geometrical representation of different methods of multiplication 
involving adding, subtracting or factoring a number from the multiplicand, division. 
 
Squaring: Algorithm for squaring, identifying the terms which occur at different odd 
and even places, other methods of squaring. Geometrical  representation of the 
identity 

 
(a+b)2 = a2 +b2 + 2 ab =  4 ab + (a – b)2 

 
 
 
                                                 
52Yuktibhāùā (in Malayalam) of Jyeùñhadeva (c.1530); Gaõitādhyāya, Ramavarma Thampuran and 
A.R. Akhileswara Aiyer (eds.), Trichur 1947; K. Chandrasekharan (ed.), Madras 1953; Edited, along 
with an ancient Sanskrit version Gaõitayuktibhāùā and English Translation, by K.V.Sarma (in Press).  
53 Yuktidīpikā of Śaïkara Vāriyar (c.1530) on Tantrasaïgraha of Nīlakaõñha Somasutvan (c.1500), 
K.V. Sarma (ed.), Hoshiarpur 1977. At the end of each chapter of this work, Śaïkara  states that he is 
only presenting the material which has been well expounded by the great dvija of the Parakroóha house, 
Jyeùñhadeva. 
54 Kriyākramakarī of Śaïkara Vāriyar (c.1535) on Līlāvatī of Bhāskarācārya II (c.1150), K.V. Sarma 
(ed.), Hoshiarpur 1975. 
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Demonstration of the bhujā-koñi-karõa-nyāya that the square of the diagonal of a 
rectangle is the sum of the squares of the sides (Pythagoras Theorem): This involves 
consideration of the following figure. 
 

 
  
Geometrical  representation of the identity 
 
         a2 - b2 = (a + b) (a – b) 
 
A demonstration of the result that the arithmetical progression of odd numbers 1, 3, 
5,… add up to the squares of successive natural numbers. 
 
Square-root: Process of extracting square-root as the inverse of the process of 
squaring. Root of sum and difference of two squares in a process of iteration. 
 
II. Daśapraśnam (Ten Questions) 
 
To find a, b, given any two of the five quantities a + b, a – b, ab, a2 + b2, a2 –b2. 
 
III Bhinnagaõitam (Mathematics of Fractions) 
 
Nature of a fraction, savarõīkaraõa (reducing a set of fractions to same denomination 
– common denominator) 
Addition, subtraction, multiplication and division of fractions, squares and square-
roots. 
 
IV Trairāśikam (Rule of Three) 
 
Rule of three for the parts of a composite, inverse rule of three. 
Almost all mathematical computations are pervaded by the trairaśika-nyāya and 
bhujā-koñi-karõa-nyāya. 
 
 
V Kuññākāraþ (Linear Indeterminate Equation) 
 
Calculation of ahargaõa (number of mean civil days elapsed since epoch), calculation 
of mean longitudes. Given the mean longitude of a planet, the corresponding 
ahargaõa  can be found by the kuññaka process. 
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The kuññaka process (as given in Līlāvatī 242-246). Demonstration of the kuññaka 
process by a consideration of the example (Līlāvatī 247) 
 
 (221x + 65)/195 = y 
 
How the process of mutual division (of the bhājya and bhājaka, 221 and 195) gives 
the apavartana (common factor) 13. Why there is no solution unless the kùepa (here 
65) is also divisible by the common factor, and then the equation is reduced to 

 
(17x + 5)/15 = y 

 
Formation of the vallī (table of quotients of mutual division) and how the process of 
vallī-upasa§hāra (sequence of reverse operations) leads step by step from  solution of 
simpler problems ultimately  to the solution of the original equation. 
 
Application of kuññaka for the calculation of ahargaõa (number of mean civil days 
elapsed since epoch) and bhagaõas (total number of completed revolutions) of mean 
Sun. 
 
 
VI Paridhi and Vyāsa (Circumference and Diameter) 
 
Another proof of bhujā - koñi - karõa - Nyāya 

 
ABCD, square with its side equal to the bhujā, is placed on the north and the koñi- 
square BRPQ is placed on the south, such that the eastern sides of both fall on the 
same line and the south side of the bhujā -square lies along the north side of the koñi-
square. Let bhujā be smaller than the koñi. 
 
Mark M on AP such that AM = BP = koñi.  
Hence MP = AB = bhujā and MD = MQ = karõa.   
Cut along MD and MQ, such that the triangles AMD and PMQ just cling at D, Q 
respectively. Turn them around to coincide with DCT and QRT.  Therefore 
  

karõa-square MDTQ =  bhujā-square ABCD + koñi-square BPQR     
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Successive approximations to the circumference of a circle  
 
By computing successively the perimeters of circumscribing square, octagon, regular 
polygon of sides 16, 32 etc using the following method: 
 
 
 

 
 
 
EA1SO is the quadrant of the square circumscribing the circle. EA1 is half the side of 
the circumscribing square. Let the karõa OA1 meet the circle at C1 and ES meet OA1 
at D1. Draw the tangent A2C1B2 parallel to ES to meet EA1 at A2. Then EA2 is half the 
side of the circumscribing regular octagon. Let OA2 meet the circle at C2 and EC1 
meet OA2 at D2. Draw A3C2B3 parallel to EC1 to meet EA1 at A3. Then EA3 is half the 
side of the regular polygon of 16 sides circumscribing the circle, and so on. 
 
EAn = bn/2, where bn is the bhujā or side of a regular polygon of 2n+1 sides. OAn = kn 
the corresponding karõa and AnDn = an the corresponding ābādhā in the triangle 
OEAn. 
  
Now b1/2= R.  Given bn proceed as follows to calculate bn+1: 
OAn = kn is obtained by kn

2 = R2 + (bn/2)2
 
 

AnDn = an is obtained by an = (½)[kn – {R2 – (bn/2)2}/kn] 
 
Finally bn+1 is obtained by  
 
(bn – bn+1)/2 = AnAn+1 = EAn . AnCn /AnDn =   (bn/2)(kn – R)/an 
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To obtain the circumference without calculating square-roots 
  
Consider a quadrant of the circle, inscribed in a square and divide a side of the square, 
which is tangent to the circle, into a large number of equal parts. The more the number 
of divisions the better is the approximation to the circumference. 
 
 

 
 
C/8 (one eighth of the circumference) is approximated by the sum of the jyārdhas 
(half-chords) bi of the arc-bits to which the circle is divided by the karõas which join 
the  points which divide tangent are joined to the centre of the circle. Let ki be the 
length of these karõas. 
  
 bi = (R/ki)di =(R/ki) [(R/n) R/ki+1] = (R/n) R2/ ki ki+1 
 
Hence 
                                           n-1                                        n-1 

 π/4 = C/8R  ≈ (1/n) ∑ R2/ki ki+1 ≈ (1/n) ∑ (R/ki)2 

                                                               i=0                                        i=0 

               
                                n-1                                                   

  π/4 ≈  (1/n )∑  R2/[R2 + i 2 (R/n)2] 
                                               i=0                                                   

 
Series expansion of each term in the right hand side is obtained by iterating  
 
 a/b = a/c – (a/b) (b-c)/c  
 
which leads to   
 
 a/b   = a/c – (a/c) (b-c)/c + (a/c) ((b-c)/c)2 +…  
                                 
This (binomial) series expansion is also justified later by showing how the partial 
sums in the following series converge to the result.  
 
 100/10 = 100/8 – (100/8)(10-8)/8 + 100/8 [(10-8)/8]2 – …. 
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Thus 
                                              n                               n 
 π/4    ≈    1 –  (1/n)3  ∑ i2  + (1/n)5  ∑  i4 – …. 
                                        i=1                           i=1 

 
When n becomes very large, this leads to the series given in the rule of Mādhava, 
Vyāse vāridhnihate... 55 
 
 C/4D = π/4 = 1 – 1/3 + 1/5 – …. 
 
 
Sama-ghāta-saïkalita – Sums of powers of natural numbers 
 
In the above derivation, the following estimate was been employed for the sama-
ghāta-saïkalita of order k, for large n: 
 
 Sn

(k) =  1k + 2k +3k + ….  + nk ≈ nk+1/(k+1)  
  
This is proved first for the case of mūla- saïkalita 
 
 Sn

(1) = 1 + 2 +  3 + …. + n  
 
                   = [n-(n-1)] + [n-(n-2)] +….+  n = n2 – Sn-1

(1) 
 
Hence, for large n, 
 
 Sn

(1) ≈  n2/2 
 
Then, for the varga-saïkalita and the ghana-saïkalita the following estimates are 
proved for large n: 
 
 Sn

(2)  = 12 + 22 +32 + ….  + n2 ≈ n3/3 
 
 Sn

(3)  = 13 + 23 +33 + ….  + n3 ≈ n4/4 
 
In each case, the derivation is based on the result  
 
 n Sn

(k-1) – Sn
(k)  = Sn-1

(k-1)  + Sn-2 
(k-1) + ….+ S1

(k-1)  
 
Now if we have already shown that  Sn

(k-1) ≈  nk/k,  then 
 
 n Sn

(k-1) – Sn
(k)  ≈  (n-1)k/k +  (n-2)k/k +…..   

 
                                    ≈  Sn

(k) /k 
 
                                                 
55This result is attributed to Mādhava by Śaïkara Vāriyar in Kriyākramakarī, cited earlier, p.379; see 
also, Yuktidīpikā, cited earlier, p.101. 
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Hence, for the general sama-ghāta-saïkalita, we get the estimate 
 
 Sn

k ≈ nk+1/(k+1) 
 
 
Vāra-saïkalita – Repeated sums 
 
The vāra-saïkalita, or repeated sums, are defined as follows: 
 
 Vn

(1) = Sn
(1) = 1 +  2 +…. + n 

 
 Vn

(r) = V1
(r-1) + V2

(r-1) +…. + Vn
(r-1)  

 
It is shown that, for large n 
 
 Σn

(r) ≈ nr+1/(r+1)! 
 
 
Cāpīkaraõa – Determination of the arc  
 
This can be done by the series given by the rule56 Iùñajyātrijyayorghātāt…, which is 
derived in the same way as the above series for C/8: 
 
 Rθ = R (sinθ/cosθ) –(R/3) (sinθ/cosθ)3 + (R/5) (sinθ/cosθ)5 – … 
 
It is said that sinθ ≤ cosθ is a necessary condition for the terms in the above series to 
progressively lead to the result. Using the above for θ = π/6, leads to the following:  
 
 C = (12D2)1/2 (1 – 1/3.3 + 1/32.5 – 1/33.7 +….) 
 
 
Antya-sa§skāra – Correction term to obtain accurate circumference 
 
Let us set 
 
 C/4D = π/4 = 1 – 1/3 + 1/5 - ….± 1/(2n-1) –(±)1/an 
 
Then the sa§skāra-hāraka (correction divisor), an will be accurate if  
 
 1/an + 1/an+1 = 1/(2n+1) 
 
This leads to the successive approximations:57  
 
 π/4 ≈ 1 – 1/3 + 1/5 –….± 1/(2n-1) – (±) 1/4n 
 
                                                 
56 See, for instance, Kriyākramakarī, cited earlier,  p.385; Yuktidīpikā, cited earlier, p.95-96. 
57 These are attributed to Mādhava in Kriyākramakarī, cited earlier, p.279; also cited in Yuktidīpikā, 
cited earlier, p.101. 
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 π/4 ≈ 1 – 1/3 + 1/5 – ….± 1/(2n-1) – (±) 1/[4n + (4/4n)] 
       
             = 1 – 1/3 + 1/5 – ….± 1/(2n-1) – (±) n/(4n2 + 1) 
 
Later at the end of the chapter, the rule,58 Ante samasa§khyādalavargaþ.., is cited as 
the   sūkùmatara-sa§skāra, more accurate correction: 59 
 
 π/4 ≈ 1 – 1/3 + 1/5 – ….± 1/(2n-1) – (±) (n2+1)/(4n3 + 5n) 
 
 
Transformation of series 
 
The above correction terms can be used to transform the series for the circumference 
as follows:: 
 
 C/4D = π/4 = [1 – 1/a1] – [1/3 – 1/a1 – 1/a2] + [1/5 –1/a2 –1/a3]…. 
 
It is shown that, using the second order correction terms, we obtain the following 
series given by the rule60 Samapañcāhatayoþ…  
 
 C/16D = 1/(15 + 4.1) – 1/(35 + 4.3) + 1/(55 + 4.5) – …. 
 
It is also noted that by using merely the lowest order correction terms, we obtain the 
following series given by the rule61 Vyāsad vāridhinihatāt… 
 
 C/4D = 3/4 + 1/(33 – 3) – 1/(53 – 5) + 1/(73 – 7) – …. 
 
 
Other series expansions 
 
It is further noted that to calculate the circumference one can also employ the 
following series as given in the rules62 Dvyādiyujā§ vā kçtayo…and Dvyādeś-
caturādervā… 
 

                                                 
58 Kriyākramakarī, cited earlier p.390, Yuktidīpikā, cited earlier, p.103. 
59These correction terms are successive convergents of  the continued fraction 
 
 1/an = 1/4n+   4/4n+   16/4n+    ….  
 
By using the third order correction term after 25 terms in the series, we get the value of  π correct to 
eleven decimal places, which is what is given in the rule Vibudhanetragajāhihutāśana…, attributed to 
Mādhava by Nīlakaõñha (see his Āryabhañīyabhāùya, Gaõitapāda, K.Sambasiva Sastri (ed.), 
Trivandrum 1930,  p. 56; see also Kriyākramakarī, cited earlier,  p. 377): 
 
 π ≈ 2827433388233/900000000000 = 3.141592653592222… 
  
60 Kriyākramakarī, cited earlier, p.390; Yuktidīpikā, cited earlier, p.102. 
61 Kriyākramakarī, cited earlier, p.390; Yuktidīpikā, cited earlier, p.102. 
62 Kriyākramakarī, cited earlier, p.390; Yuktidīpikā, cited earlier, p.103. 
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 C/4D = 1/2 + 1/(22 – 1) – 1/(42 – 1) + 1/(62 – 1) – …. 
 
 C/8D = 1/(22 – 1) + 1/(62 – 1) + 1/(102 – 1) – …. 
 
 C/8D = 1/2 - 1/(42- 1) – 1/(82- 1) - 1/(122- 1) - …. 
 
For the first series, a correction term is also noted: 
 
 C/4D ≈ 1/2 + 1/(22 – 1) – 1/(42 – 1) + 1/(62 – 1) –…  
  
          ± 1/((2n)2 – 1) – (±) 1/[2(2n + 1)2 + 4] 
 
 
VII Jyānayanam (Computation of Sines) 
 
Jyā, koñi and śara  –  Rsin x, Rcos x and Rversin x = R (1-cosx) 
 
Construction of an inscribed regular hexagon with side equal to the radius, which 
gives Rsin (π/6)    
 
The relations 
 
 Rsin (π/2 – x) = Rcos x = R(1-versin x) 
 
 Rsin (x/2) = ½ [(Rsin x) 2 + (Rversin x)2]1/2 

 
Using the above relations several sines can be calculated starting from the following: 
 
 Rsin (π/6) = R/2. 
  
 Rsin (π/4) = (R2/2)1/2. 
 
Accurate determination of the pañhita-jyā (enunciated or tabulated sine values) when a 
quadrant of the circle is divided into 24 equal parts of 3˚45’ = 225’ each. This 
involves estimating successive sine differences.                                                                                            
 
To find the sines of intermediate values, a first approximation is 
 
Rsin (x + h) ≈ Rsin x + h Rcos x 
 
A better approximation as stated in the rule63 Iùñadoþkoñidhanuùoþ… is the following: 
 
Rsin (x + h) ≈ Rsin x + (2/∆) (Rcos x – (1/∆) Rsin x) 
 
Rcos (x + h) ≈  Rcos x – (2/∆) (Rsin x + (1/∆) Rcos x) 
 
where ∆ = 2R/h. 
                                                 
63 Tantrasaïgraha,  2.10-14. 
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Accurate Determination of Sines  
 
Given an arc s = Rx, divide it into n equal parts and let the piõóa-jyās Bj, and  śaras  
Sj-1/2, with j = 0, 1…n, be given by  
 
 Bj = Rsin (jx/n) 
 
 Sj-1/2 = Rvers [(j-1/2)x/n] 
 
If α be the samasta-jyā (total chord) of the arc s/n, then 
 
 (Bj+1 – Bj) – (Bj – Bj-1) = (α/R)(Sj-1/2 – Sj+1/2) = – (α/R)2 Bj 
 
for j = 1,2,…n. Hence 
 
 Sn-1/2 –S1/2 = (α/R)(B1 + B2 +…. + Bn-1) 
 
 Bn – n B1 = – (α/R)2[B1 + (B1 + B2) +… + (B1 + B2 +….+ Bn-1)] 
 
          = – (α/R)(S1/2 + S3/2 +…. + Sn-1/2 – nS1/2) 
 
If B and S are the jyā and śara of the arc s, in the limit of very large n, we have as a 
first approximation 
 
 Bn ≈ B, Bj ≈ js/n, Sn-1/2 ≈ S, S1/2 ≈ 0 and α ≈ s/n.  
 
Hence 
 
 S ≈ (1/R) (s/n)2 (1 + 2 +….+ n-1) ≈ s2/2R 
 
 B ≈ n(s/n) – (1/R)2(s/n)3[ 1 + (1 + 2) +…+(1 + 2+…+ n-1)] ≈ s- s3/6R2 

 
Iterating these results we get successive approximations, leading to the following 
series given by the rule64  Nihatya cāpavargeõa…: 
 
Rsin (s/R) = B = R [(s/R) – (s/R)3/3! + (s/R)5/5! – …] 
 
 R – Rcos (s/R) = S = R [(s/R)2 – (s/R)4/4! + (s/R)6/6! – …] 
 
While carrying successive approximations, the following result for vāra-saïkalitas 
(repeated summations) is used: 
 
   n 

 ∑ j(j + 1)...(j + k – 1)/k! = n(n + 1)…(n + k)/(k + 1)! ≈ nk+1/(k + 1)! 
 j=1 
 

                                                 
64Yuktidīpikā, cited earlier, p.118. 
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The above series for jyā and śara can be employed to calculate them, without using 
the tabular values, by using the sequence of numerical parameters given by the 
formulae,65 vidvān etc and stena etc. For example, if a quadrant of a circle is assigned 
the measure q = 5400’, then for a given arc s, the corresponding jyā B is given 
accurately to the third minute by: 66 
 
 B ≈  s – (s/q)3(u3 –(s/q)2(u5 – (s/q)2(u7 – (s/q)2(u9 – (s/q)2u11)))) 
 
where 
 
 u3 = 2220’39’’40’’’, u5 = 273’57’’47’’’, u7 = 16’05’’41’’’, u9 = 33’’06’’’  
 and u11 = 44’’’ 
 
Accurate sine values can be used to find an accurate estimate of the circumference 
given a certain value of the diameter. 
 
Series for the square of sine given by the rule67 Nihatya cāpavargeõa… 
 
 Sin2 x = x2 – x4 /(22 – 2/2) + x6 /(22-2/2)(32-3/2) – … 
 
These squares can also be directly computed using the formulae68 Śaurirjayati…  
 
 
Computation of sines without using the radius 
 
Two proofs of the jīve-paraspara-nyāya 
 
Sin (x ± y) = sin x cos y ± cos x sin y 
 
Cos (x ± y) = cos x cos y – (±) sin x sin y 
 
Later, another proof is given using the formulae for the product of diagonals in a 
cyclic quadrilateral. It is noted that the jīve-paraspara-nyāya can be used to compute 
tabular sines. 
 
 
Cyclic Quadrilateral 
 
First a derivation of the formulae for the area of a triangle, its altitude and ābādhās, 
the two intercepts of the base formed by the altitude from the vertex to the base. 
 

                                                 
65 Attributed to Mādhava by Nīlakaõñha in his Āryabhañīyabhāùya, Gaõitapāda, cited earlier, p.151; 
see also, Yuktidīpikā, cited earlier, p.117-118. 
66Mādhava has also given the tabulated sine values (for arcs in multiples of 225’) accurately to the 
third minute in the rule Śreùñha§ nāma variùñhānā§… (cited by Nīlakaõñha in his Āryabhañīyabhāùya, 
Gaõitapāda, cited earlier, p.73-74). 
67 Yuktidīpikā, cited earlier, p. 119. 
68 Yuktidīpikā, cited earlier, p. 119-120. 
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A derivation of the following formulae for the product and difference in the squares of 
two chords, in terms of the chords associated with the sum and difference of the 
corresponding arcs:  
 
sin2 x – sin2 y = sin (x + y) sin (x – y) 
 
sin x sin y = sin2 [(x + y)/2] – sin2 [(x – y)/2] 
 
Later, it is noted that these formulae can also be used to calculate tabular sines without 
using the radius. 
 
 
Diagonals of a cyclic quadrilateral 
 
If a, b, c, d are the sides of a cyclic quadrilateral and x, y, z are the three diagonals, 
then the above result on the product and difference of the squares of two chords  is 
used to prove: 
 
 a.b + c.d = y.z 
 a.d + b.c = z.x 
 a.c + b.d = x.y 

 
 
Hence 
 
x = [(ac + bd)(ad + bc)/(ab + cd)]1/2 

y = [(ab + cd)(ac + bd)/(ad + bc)]1/2 
z = [(ab + cd)(ad + bc)/(ac + bd)]1/2 
 
It is noted that only three diagonals are possible. 
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Area of a cyclic quadrilateral 
 
In the case of a triangle, by making use of the jīve-paraspara-nyāya, it is shown later 
that 
 
 Altitude = Product of the two adjacent sides/Circum-diameter 
                                                                                             
Based on this, it is shown that 
 
 Area of a cyclic quadrilateral = (x.y.z) / 4R 
 
 
Area of a cyclic quadrilateral in terms of the sides, without using the diagonals or the 
circum-radius (Līlāvatī 169) 
 

 
 
Draw altitudes from two corners to the opposite diagonal. Then  
 
Area = (Sum of altitudes) (Diagonal)/2 
 
(Sum of altitudes)2 = (Other diagonal)2  

       - (Distance between feet of the altitudes)2 

 
(Area)2 =  [x2 – {(a2 + c2 ) – (b2 + d2)}2/4y2](y2/4)   
 

   = (s – a)(s – b)(s – c)(s – d) 
 
where, s = (a + b + c + d)/2  is the semi-perimeter of the quadrilateral69. 
 
                                                 
69 The two results derived above for the area of a cyclic quadrilateral lead to the following formula for 
its circum-radius in terms of the sides (Parameśvara in his Vivaraõa on Līlāvatī; also cited in  
Kriyākramakarī, cited earlier,  p.363) 
 
 R = (1/4)[(ab + cd)(ac + bd)(ad + bc)/(s – a)(s – b)(s – c)(s – d)]1/2        
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Similar proof is given of the formula for the area of a triangle 
 
 Area of a triangle = [s(s – a)(s – b)(s –c)]1/2 
 
Calculation of the of the śaras when two circles intersect (as given in Āryabhañīya, 
Gaõitapāda 18) 
 
Calculation of the two shadows from the same gnomon at different times (as given in 
Līlāvatī 232.) 
 
 
Surface area of a sphere 
 
Draw  large number of circles at equal distances parallel to the East-West great circle. 
The radii of these circles are the sines Bj of the arcs of the great circle NWS. If h is the 
perpendicular distance between these circles 
 
 

 
 
 
                                         n 
 Area ≈ 2 ∑ 2πBj h 
                                      j=1 
 
If ∆j are sine differences, and α is the chord of each arc bit, then 
 
 Bj = (∆j - ∆j+1)(R/α)2   
 
Since when n is very large, ∆n ≈ 0, ∆1 ≈ α ≈ h, 
 
 Area = 4πR2 
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Volume of a sphere 
 
First, a proof of the formula for the area of a circle.  
 
 Area = (½) Circumference x Radius 
 
Divide the sphere into various slices parallel to the East-West circle as before. Then  
 
 Volume ≈ ∑ π Bj

2 h = ∑ π h[(2R)2/2 – j2 h2 ] 
                                            j                        j 

 
Since   

h = 2R/n 
and  
 
  Bj

2 = [(2R)2/2 – j2 h2 ], 
 
we get 
                                                                       n 
 Volume ≈ 4π R3 – π (2R/n)3 ∑ j2  
                                                                                   j=1   

    
    = (4/3)πR3 

 
 

 


