THE METHODOLOGY OF INDIAN MATHEMATICS

I. ALLEGED ABSENCE OF PROOFS IN INDIAN MATHEMATICS

Several books have been written on the history of Indian tradition in mathematics. ${ }^{1}$ In addition, many books on history of mathematics devote a section, sometimes even a chapter, to the discussion of Indian mathematics. Many of the results and algorithms discovered by the Indian mathematicians have been studied in some detail. But, little attention has been paid to the methodology and foundations of Indian mathematics. There is hardly any discussion of the processes by which Indian mathematicians arrive at and justify their results and procedures. And, almost no attention is paid to the philosophical foundations of Indian mathematics, and the Indian understanding of the nature of mathematical objects, and validation of mathematical results and procedures.

Many of the scholarly works on history of mathematics assert that Indian Mathematics, whatever its achievements, does not have any sense of logical rigor. Indeed, a major historian of mathematics presented the following assessment of Indian mathematics over fifty years ago:

The Hindus apparently were attracted by the arithmetical and computational aspects of mathematics rather than by the geometrical and rational features of the subject which had appealed so strongly to the Hellenistic mind. Their name for mathematics, ganita, meaning literally the 'science of calculation' well characterises this preference. They delighted more in the tricks that could be played with numbers than in the thoughts the mind could produce, so that neither Euclidean geometry nor Aristotelian logic made a strong impression upon them. The Pythagorean problem of the incommensurables, which was of intense interest to Greek geometers, was of little import to Hindu mathematicians, who treated rational and irrational quantities, curvilinear and rectilinear magnitudes indiscriminately. With respect to the development of algebra, this attitude occasioned perhaps and incremental advance, since by the Hindus the irrational roots of the quadratics were no longer disregarded as they had been by the Greeks, and since to the Hindus we owe also the immensely convenient concept of the absolute negative. These generalisations of the number system and the consequent freedom of arithmetic from geometrical representation were to be essential in the development of the concepts of calculus, but the Hindus could hardly have appreciated the theoretical significance of the change...

[^0]The strong Greek distinction between the discreteness of number and the continuity of geometrical magnitude was not recognised, for it was superfluous to men who were not bothered by the paradoxes of Zeno or his dialectic. Questions concerning incommensurability, the infinitesimal, infinity, the process of exhaustion, and the other inquiries leading toward the conceptions and methods of calculus were neglected. ${ }^{2}$

Such views have found their way generally into more popular works on history of mathematics. For instance, we may cite the following as being typical of the kind of opinions commonly expressed about Indian mathematics:

As our survey indicates, the Hindus were interested in and contributed to the arithmetical and computational activities of mathematics rather than to the deductive patterns. Their name for mathematics was ganita, which means "the science of calculation". There is much good procedure and technical facility, but no evidence that they considered proof at all. They had rules, but apparently no logical scruples. Moreover, no general methods or new viewpoints were arrived at in any area of mathematics.

It is fairly certain that the Hindus did not appreciate the significance of their own contributions. The few good ideas they had, such as separate symbols for the numbers from 1 to 9 , the conversion to base 10 , and negative numbers, were introduced casually with no realisation that they were valuable innovations. They were not sensitive to mathematical values. Along with the ideas they themselves advanced, they accepted and incorporated the crudest ideas of the Egyptians and Babylonians. ${ }^{3}$

The burden of scholarly opinion is such that even eminent mathematicians, many of whom have had fairly close interaction with contemporary Indian mathematics, have ended up subscribing to similar views, as may be seen from the following remarks of one of the towering figures of twentieth century mathematics:

For the Indians, of course, the effectiveness of the cakravāla could be no more than an experimental fact, based on their treatment of great many specific cases, some of them of considerable complexity and

[^1]involving (to their delight, no doubt) quite large numbers. As we shall see, Fermat was the first one to perceive the need for a general proof, and Lagrange was the first to publish one. Nevertheless, to have developed the cakravāla and to have applied it successfully to such difficult numerical cases as $\mathrm{N}=61$, or $\mathrm{N}=67$ had been no mean achievements. ${ }^{4}$

Modern scholarship seems to be unanimous in holding the view that Indian mathematics lacks any notion of proof. But even a cursory study of the source-works that are available in print would reveal that Indian mathematicians place much emphasis on providing what they refer to as upapatti (proof, demonstration) for every one of their results and procedures. Some of these upapattis were noted in the early European studies on Indian mathematics in the first half of the nineteenth Century. For instance, in 1817, H. T. Colebrooke notes the following in the preface to his widely circulated translation of portions of Brahmasphutasiddhānta of Brahmagupta and Līlāvatı̄ and Bījaganita of Bhāskarācārya:

On the subject of demonstrations, it is to be remarked that the Hindu mathematicians proved propositions both algebraically and geometrically: as is particularly noticed by Bhāskara himself, towards the close of his algebra, where he gives both modes of proof of a remarkable method for the solution of indeterminate problems, which involve a factum of two unknown quantities. ${ }^{5}$

Another notice of the fact that detailed proofs are provided in the Indian texts on mathematics is due to Charles Whish who, in an article published in 1835, pointed out that infinite series for π and for trigonometric functions were derived in texts of Indian mathematics much before their 'discovery' in Europe. Whish concluded his paper with a sample proof from the Malayalam text Yuktibhāșā of the theorem on the square of the diagonal of a right angled triangle and also promised that:

A further account of the Yuktibhās \bar{a}, the demonstrations of the rules for the quadrature of the circle by infinite series, with the series for the

[^2]sines, cosines, and their demonstrations, will be given in a separate paper: I shall therefore conclude this, by submitting a simple and curious proof of the $47^{\text {th }}$ proposition of Euclid [the so called Pythagoras theorem], extracted from the Yuktibhāṣa. ${ }^{6}$

It would indeed be interesting to find out how the currently prevalent view, that Indian mathematics lacks the notion of proof, obtained currency in the last 100-150 years.

II. GANITA: Indian Mathematics

Gaṇita, Indian mathematics, is defined as follows by Gaṇeśa Daivajña, in his famous commentary Buddhivilāsinī on Bhāskarācārya's Līlāvatī:

ganyate saṁkhyāaate tadganitam. tatpratipādakatvena
 tatsamjjñà̀ śāstram ucyate. ${ }^{7}$

Ganita is calculation and numeration; and the science that forms the basis of this is also called gannita. Ganita is of two types: vyaktaganita and avyaktaganita. Vyaktaganita, also called pātīganita, calculations on the board, is the branch of ganita that employs manifest quantities for performing calculations. Avyaktaganita, also called Bījaganita, takes recourse to the use of avyakta or unknown (indeterminate, unmanifest) quantities such as yāvat-tāvat (so much as), kālaka (black), nīlaka (blue) etc. The avyakta quantities are also called varṇas (colours) and are denoted by symbols $y \bar{a}, k \bar{a}, n \bar{l}$, just as in modern algebra unknowns are denoted by symbols x, y, z, etc.

Gaṇita is generally taken to be a part of jyotiḥśāstra. Nrsiminha Daivajña, in his exposition, vārttika, on the commentary Vāsanābhāṣya by Bhāskarācārya on his own Siddhāntaśiromaṇi, says that the ganita-skandha of jyotihśāstra is composed of four types of ganitas: vyakta-ganita, avyakta-ganita, graha-gaṇita (mathematical astronomy which deals with calculation of planetary positions) and gola-ganita (spherical astronomy, which includes demonstrations of procedures of calculation using gola, the sphere, and vedha, observations). According to Ganeśa Daivajña the prayojana (purpose) of ganita-śāstra is 'the acquisition of knowledge concerning orbits, risings, settings, dimensions etc., of the planets and stars; and also the knowledge of samihit \bar{a} (omens), jātaka (horoscopy), etc., which are indicators of the merits and demerits earned through the actions of former births'. ${ }^{8}$

It is not that the study of mathematics is entirely tied to astronomy. The ancient texts dealing with geometry, the Śulva Sūtras are part of Kalpa, a Vedānga different from

[^3]Jyotiṣa, and deal with the construction of yajña-vedīs, alters. Much later, the Jaina mathematician Mahāvīrācārya (c.850) enumerates the uses of gaṇita in several contexts as follows: ${ }^{9}$

In all transactions, which relates to worldly, Vedic or other similar religious affairs calculation is of use. In the science of love, in the science of wealth, in music and in drama, in the art of cooking, in medicine, in architecture, in prosody, in poetics and poetry, in logic and grammar and such other things, and in relation to all that constitutes the peculiar value of the arts, the science of calculation (ganita) is held in high esteem. In relation to the movement of the Sun and other heavenly bodies, in connection with eclipses and conjunctions of planets, and in connection with the tripraśna (direction, position and time) and the course of the Moon-indeed in all these it is utilised. The number, the diameter and the perimeter of islands, oceans and mountains; the extensive dimensions of the rows of habitations and halls belonging to the inhabitants of the world of light, of the world of the gods and of the dwellers in hell, and other miscellaneous measurements of all sort-all these are made out by the help of ganita. The configuration of living beings therein, the length of their lives, their eight attributes, and other similar things; their progress and other such things, their staying together, etc.-all these are dependent upon ganita (for their due comprehension). What is the good of saying much? Whatever there is in all the three worlds, which are possessed of moving and non-moving beings, cannot exist as apart from ganita (measurement and calculation).

The classification of ganita into avyakta and vyakta depends on whether indeterminate quantities like $y \bar{a} v a t-t \bar{a} v a t$ etc. are employed in the various processes discussed. Thus vyakta-ganita subsumes not only arithmetic and geometry, but also topics included in 'algebra', such as solutions of equations, if no indeterminate quantities are introduced for finding the solutions. The celebrated text, Līl $\bar{l} v a t \bar{\imath}$ of Bhāskarācārya II (c.1150) deals with vyakta-gaṇita and is divided into the following sections: (1) Paribhāṣā (units and measures); (2) Samंkhyā-sthāna (place-value system); (3) Parikarmāstaka (eight operations of arithmetic, namely addition, subtraction, multiplication, division, square, square-root, cube, cube-root), (4) Bhinnaparikarma (operations with fractions); (5) Śünya-parikarma (operations with zero), (6) Prakīrna (miscellaneous processes, including trairāśika (rule of three); (7) Miśravyavahāra (investigation of mixture, ascertaining composition as principal and interest joined and so forth); (8) Śedhī- vyavahāra (progressions and series); (9) Ksetra-vyavahāra (plane geometry); (10) Khāta- vyavahāra (excavations and solids); (11) Citi, Krakaca and Rāśi-vyavahāra (calculation with stacks, saw, mounds of grain), (12) Chāyā̄-vyavahāra (gnomonics); (13) Kuṭtaka (linear indeterminate equations); (14) Añkapāśa (combinatorics of digits).

[^4]The text Bījagaṇita of Bhāskarācārya deals with avyakata-ganita and is divided into the following sections: (1) Dhanarna-sadvidha (the six operations with positive and negative quantities, namely addition, subtraction, multiplication, division, square and square-root); (2) Kha-sadvidha (the six operations with zero); (3) Avyakta-sadvidha (the six operations with indeterminate quantities); (4) Karaṇi-saḍvidha (the six operations with surds); (5) Kuttaka (linear indeterminate equations); (6) Varga-prakrti (quadratic indeterminate equation of the form $N x^{2}+m=y^{2}$); (7) Cakravāla (cyclic process for the solution of above quadratic indeterminate equation); (8) Ekavarnasamīkaraṇa (simple equations with one unknown); (9) Madhyamāharaṇa (quadratic etc. equations); (10) Anekavarṇa-samīkaraṇa (simple equations with several unknowns); (11) Madhyamāharana-bheda (varieties of quadratics); (12) Bhāvita (equations involving products). Here, the first seven sections, starting from Dhanarna-ṣadvidha to Cakravāla are said to be bïjopayogī (adjuncts to algebraic analysis) and the last five sections deal with bïja, which is mainly of two types: Ekavarṇa-samīkaraṇa (equation with single unknown) and Anekavarṇa-samīkaraṇa (equation with several unknowns).

Gaṇeśa Daivajña raises the issue of the propriety of including discussion of kuttaka (linear indeterminate equations) and anikapāśa (combinatorics), etc. in the work on vyakta-ganita, Līlāvat̄̄, as they ought to be part of Bījaganita. He then goes on to explain that this is alright as an exposition of these subjects can be given without employing $a v y a k t a-m a \overline{r g a}$, i.e., procedures involving use of indeterminate quantities.

An interesting discussion of the relation between vyakta and avyakta-ganita is to be found in the commentary of Kṛ̣ṇa Daivajña on Bījagaṇita of Bhāskarācārya. ${ }^{10}$ The statement of Bhāskara, 'vyaktam avyaktabījam' can be interpreted in two ways: Firstly that vyakta is the basis of avyakta (avyaktasya bïjam), because without the knowledge of vyakta-ganita (composed of addition, and other operations, the rule of three, etc.) one cannot even think of entering into a study of avyakta-ganita. It is also true that vyakta is that which is based on avyakta (avyaktaim bïjaim yasya), because though the procedures of vyakta-ganita do not depend upon avyakta methods for being carried through (svarūpa-nirvāha), when it comes to justifying the vyakta methods by upapattis or demonstrations, vyakta-ganita is dependent on avyakta-ganita.

III Upapattis in Indian Mathematics

The tradition of Upapattis in Mathematics and Astronomy

A major reason for our lack of comprehension, not merely of the Indian notion of proof, but also of the entire methodology of Indian mathematics, is the scant attention paid to the source-works so far. It is said that there are over one hundred thousand manuscripts on Jyotihśástra, which includes, apart from works in ganita-skandha (mathematics and mathematical astronomy), also those in samihitā-skandha (omens) and hora (astrology). ${ }^{11}$ Only a small fraction of these texts have been published. A

[^5]recent publication, lists about 285 published works in mathematics and mathematical astronomy. Of these, about 50 are from the period before $12^{\text {th }}$ century AD , about 75 from $12^{\text {th }}-15^{\text {th }}$ centuries, and about 165 from $16^{\text {th }}-19^{\text {th }}$ centuries. ${ }^{12}$

Much of the methodological discussion is usually contained in the detailed commentaries; the original works rarely touch upon such issues. Modern scholarship has concentrated on translating and analysing the original works alone, without paying much heed to the commentaries. Traditionally the commentaries have played at least as great a role in the exposition of the subject as the original texts. Great mathematicians and astronomers, of the stature of Bhāskarācārya-I, Bhāskarācārya-II, Parameśvara, Nīlakaṇ̣ha Somasutvan, Gaṇeśa Daivajña, Munīśvara and Kamālakara, who wrote major original treatises of their own, also took great pains to write erudite commentaries on their own works and on works of earlier scholars. It is in these commentaries that one finds detailed upapattis of the results and procedures discussed in the original text, as also a discussion of the various methodological and philosophical issues. For instance, at the beginning of his commentary Buddhivilāsin̄̄, Gaṇeśa Daivajña states:

There is no purpose served in providing further explanations for the already lucid statements of Śrī Bhāskara. The knowledgeable mathematicians may therefore note the speciality of my intellect in the upapattis, which are after all the essence of the whole thing. ${ }^{13}$

Amongst the published works on Indian mathematics and astronomy, the earliest exposition of upapattis are to be found in the bhāsya of Govindasvāmin (c 800) on Mahābhāskarīya of Bhāskarācārya-I, and the Vāsanābhāṣya of Caturveda Pṛthūdakasvāmin (c 860) on Brahmasphuṭasiddhānta of Brahmagupta ${ }^{14}$. Then we find very detailed exposition of upapattis in the works of Bhāskarācārya-II (c.1150): his Vivaraṇa on Śşsyadhīvrddhidātantra of Lalla and his Vāsanābhāsya on his own Siddhāntaśiromani. ${ }^{15}$ Apart from these, Bhāskarācārya provides an idea of what is an upapatti in his Bījavāsanā on his own Bījaganita in two places. In the chapter on madhyamāharaṇa (quadratic equations) he poses the following problem:

Find the hypotenuse of a plane figure, in which the side and upright are equal to fifteen and twenty. And show the upapattis (demonstration) of the received procedure of computation. ${ }^{16}$

Bhāskarācārya provides two upapattis for the solution of this problem, the so-called Pythagoras theorem; and we shall consider them later. Again, towards the end of the

[^6]Bījaganita in the chapter on bhāvita (equations involving products), while considering integral solutions of equations of the form $a x+b y=c x y$, Bhāskarācārya explains the nature of upapatti with the help of an example:

The upapatti (demonstration) follows. It is twofold in each case: One geometrical and the other algebraic. The geometric demonstration is here presented...The algebraic demonstration is next set forth... This procedure has been earlier presented in a concise form by ancient teachers. The algebraic demonstrations are for those who do not comprehend the geometric one. Mathematicians have said that algebra is computation joined with demonstration; otherwise there would be no difference between arithmetic and algebra. Therefore this explanation of the principle of resolution has been shown in two ways. ${ }^{17}$

Clearly the tradition of exposition of upapattis is much older and Bhāskarācārya and later mathematicians and astronomers are merely following the traditional practice of providing detailed upapattis in their commentaries to earlier, or their own, works.

In Appendix I we give a list of important commentaries, available in print, which present detailed upapattis. It is unfortunate that none of the published source-works that we have mentioned above has so far been translated into any of the Indian languages, or into English; nor have they been studied in depth with a view to analyse the nature of mathematical arguments employed in the upapattis or to comprehend the methodological and philosophical foundations of Indian mathematics and astronomy. ${ }^{18}$ In this article we present some examples of the kinds of upapattis

[^7]provided in Indian mathematics, from the commentaries of Ganeśa Daivajña (c.1545) and Kṛṣna Daivajña (c.1600) on the texts Līlāvatū and Bījagaṇita respectively, of Bhāskarācārya -II (c.1150), and from the celebrated Malayalam work Yuktibhāṣā of Jyesthhadeva (c.1530). We shall also briefly discuss the philosophical foundations of Indian mathematics and its relation to other Indian sciences.

Mathematical results should be supported by Upapattis

Before discussing some of the upapattis presented in Indian mathematical tradition, it is perhaps necessary to put to rest the widely prevalent myth that the Indian mathematicians did not pay any attention to, and perhaps did not even recognise the need for justifying the mathematical results and procedures that they employed. The large corpus of upapattis, even amongst the small sample of source-works published so far, should convince anyone that there is no substance to this myth. Still, we may cite the following passage from Kṛ̣ṇa Daivajña's commentary Bījapallavam on Bījagaṇita of Bhāskarācārya, which clearly brings out the basic understanding of Indian mathematical tradition that citing any number of instances (even an infinite number of them) where a particular result seems to hold, does not amount to establishing that as a valid result in mathematics; only when the result is supported by a upapatti or a demonstration, can the result be accepted as valid:

How can we state without proof (upapatti) that twice the product of two quantities when added or subtracted from the sum of their squares is equal to the square of the sum or difference of those quantities? That it is seen to be so in a few instances is indeed of no consequence. Otherwise, even the statement that four times the product of two quantities is equal to the square of their sum, would have to be accepted as valid. For, that is also seen to be true in some cases. For instance take the numbers 2, 2. Their product is 4 , four times which will be 16 , which is also the square of their sum 4 . Or take the numbers 3,3 . Four times their product is 36 , which is also the square of their sum 6 . Or take the numbers 4,4 . Their product is 16 , which when multiplied by four gives 64 , which is also the square of their sum 8 . Hence, the fact that a result is seen to be true in some cases is of no consequence, as it is possible that one would come across contrary instances also. Hence it is necessary that one would have to provide a proof (yukti) for the rule that twice the product of two quantities when added or subtracted from the sum of their squares results in the square of the sum or difference of those quantities. We shall provide the proof (upapatti) in the end of the section on ekavarna-madhyamāharana. ${ }^{19}$

We shall now present a few upapattis as enunciated by Gaṇeśa Daivajña and Krṣna Daivajña in their commentaries on Līlāvatū and Bījagaṇita of Bhāskarācārya. These

History of Astronomy, Shimla 2002, p. 169-182. An outline of the proofs given in Yuktibhāṣā can also be found in T. A. Saraswati Amma, 1979, cited earlier, and more exhaustively in S. Parameswaran, The Golden Age of Indian Mathematics, Kochi 1998.
19 Bījapallavam, cited earlier, p. 54 .
upapattis are written in a technical Sanskrit, much like say the English of a text on Topology, and our translations below are somewhat rough renderings of the original.

The rule for calculating the square of a number

According to Līlāvatī:
The multiplication of two like numbers together is the square. The square of the last digit is to be placed over it, and the rest of the digits doubled and multiplied by the last to be placed above them respectively; then omit the last digit, shift the number (by one place) and again perform the like operation...

Ganeśa's upapatti for the above rule is as follows: ${ }^{20}$ On the left we explain how the procedure works by taking the example of $(125)^{2}=15,625$:

By using the rule on multiplication, keeping in mind the place-values, and by using the mathematics of indeterminate quantities, let us take a number with three digits with $y \bar{a}$ at the $100^{\text {th }}$ place, $k \bar{a}$ at the $10^{\text {th }}$ place and $n \bar{l}$ at the unit place. The number is then [in the Indian notation with the plus sign understood] ya 1 ka $1 n \bar{l} 1$.

Using the rule for the multiplication of indeterminate quantities, the square [of the above number] will be yā va 1 yā kā bhā 2 yānī bhā 2 $k \bar{a}$ va 1 k $\bar{a} n \bar{l} b h a ̄ 2 n \bar{l} v a l$ [using the Indian notation, where $v a$ after a symbol stands for varga or square and $b h \bar{a}$ after two symbols stands for bhāvita or product].

Here we see in the ultimate place, the square of the first digit $y \bar{a}$; in second and third places there are $k \bar{a}$ and $n \bar{l}$ multiplied by twice the first $y \bar{a}$. Hence the first part of the rule: "The square of the last digit..." Now, we see in the fourth place we have square of $k \bar{a}$; in the fifth we have $n \bar{l}$ multiplied by twice $k \bar{a}$; in the sixth we have square of $n \bar{l}$. Hence it is said, "Then omitting the last digit move the number and again perform the like operation". Since we are finding the square by multiplying, we should add figures corresponding to the same place value, and hence we have to move the rest of the digits. Thus the rule is demonstrated.

[^8]While Gaṇeśa provides such avyaktarītya upapattis or algebraic demonstrations for all procedures employed in arithmetic, Sañkara Vāriyar, in his commentary. Kriyākramakarī, presents ksetragata upapattis, or geometrical demonstrations.

Square of the diagonal of a right-angled triangle; the so-called Pythagoras Theorem:
Gaṇeśa provides two upapattis for calculating the square of the hypotenuse (karna) of a right-angled triangle. ${ }^{21}$ These upapattis are the same as the ones outlined by Bhāskarācārya-II in his Bījavāsanā on his own Bījaganita, and were referred to earlier. The first involves the avyakta method and proceeds as follows: ${ }^{22}$

Take the hypotenuse (karna) as the base and assume it to be $y \bar{a}$. Let the bhuj \bar{a} and koti (the two sides) be 3 and 4 respectively. Take the hypotenuse as the base and draw the perpendicular to the hypotenuse from the opposite vertex as in the figure. [This divides the triangle into two triangles, which are similar to the original] Now by the rule of proportion (anupāta), if $y \bar{a}$ is the hypotenuse the bhujā is 3, then when this bhuj $\bar{a} 3$ is the hypotenuse, the bhuja \bar{a}, which is now the $\bar{a} b \bar{a} d h \bar{a}$ (segment of the base) to the side of the original bhuja will be (9/ya). Again if $y \bar{a}$ is the hypotenuse, the kotti is 4, then when this koti 4 is the hypotenuse, the koti, which is now the segment of base to the side of the (original) koti will be ($16 / y \bar{a}$). Adding the two segments ($\bar{a} b \bar{a} d h \bar{a} s$) of $y \bar{a}$ the hypotenuse and equating the sum to (the hypotenuse) $y \bar{a}$, crossmultiplying and taking the square-roots, we get $y \bar{a}=5$, the square root of the sum of the squares of bhuja and koti.

The other upapatti of Ganeśa is ksetragata or geometrical, and proceeds as follows: ${ }^{23}$
Take four triangles identical to the given and taking the four hypotenuses to be the four sides, form the square as shown. Now, the interior square has for its side the difference of bhuja and

[^9]
koti. The area of each triangle is half the product of bhuja and koti and four times this added to the area of the interior square is the area of the total figure. This is twice the product of bhuja and kotic added to the square of their difference. This, by the earlier cited rule, is nothing but the sum of the squares of bhuja and koti. The square root of that is the side of the (big) square, which is nothing but the hypotenuse.

One of the important aspects of Indian mathematics is that in many upapattis the nature of the underlying mathematical objects plays an important role. We can for instance, refer to the upapatti given by Kṛ̣na Daivajña for the well-known rule of signs in Algebra. While providing an upapatti for the rule, "the number to be subtracted if positive (dhana) is made negative (rna) and if negative is made positive", Kṛ̣ṇa Daivajña states:

Negativity (rnatva) here is of three types-spatial, temporal and that pertaining to objects. In each case, [negativity] is indeed the vaiparitya or the oppositeness... For instance, the other direction in a line is called the opposite direction (viparitta dik); just as west is the opposite of east... Further, between two stations if one way of traversing is considered positive then the other is negative. In the same way past and future time intervals will be mutually negative of each other...Similarly, when one possesses said objects they would be called his dhana (wealth). The opposite would be the case when another owns the same objects... Amongst these [different conceptions], we proceed to state the upapatti of the above rule, assuming positivity (dhanatva) for locations in the eastern direction and negativity (rnatva) for locations in the west, as follows... ${ }^{24}$

Krṣna Daivajña goes on to explain how the distance between a pair of stations can be computed knowing that between each of these stations and some other station on the same line. Using this he demonstrates the above rule that "the number to be subtracted if positive is made negative..."

The kuttaka process for the solution of linear indeterminate equations:

To understand the nature of upapatti in Indian mathematics one will have to analyse some of the lengthy demonstrations which are presented for the more complicated results and procedures. One will also have to analyse the sequence in which the results and the demonstrations are arranged to understand the method of exposition and logical sequence of arguments. For instance, we may refer to the demonstration given

[^10]by Kṛṣna Daivajña ${ }^{25}$ of the celebrated kuttaka procedure, which has been employed by Indian mathematicians at least since the time of Āryabhata (c 499 AD), for solving first order indeterminate equations of the form
$$
(a x+c) / b=y
$$
where a, b, c are given integers and x, y are to be solved for integers. Since this upapatti is rather lengthy, it is presented separately as Appendix II. Here, we merely recount the essential steps. Kṛṣna Daivajña first shows that the solutions for x, y do not vary if we factor all three numbers a, b, c by the same common factor. He then shows that if a and b have a common factor then the above equation will not have a solution unless c is also divisible by the same common factor. Then follows the upapatti of the process of finding the greatest common factor of a and b by mutual division, the so-called Euclidean algorithm. He then provides an upapatti for the kuttaka method of finding the solution by making a vallı̄ (table) of the quotients obtained in the above mutual division, based on a detailed analysis of the various operations in reverse (vyasta-vidhi). Finally, he shows why the procedure differs depending upon whether there are odd or even number of coefficients generated in the above mutual division.

Nīlakaṇtha's proof for the sum of an infinite geometric seires

In his $\bar{A} r y a b h a t i \bar{i} y a b h a ̄ s y a$, while deriving an interesting approximation for the arc of circle in terms of the $j y \bar{a}$ (sine) and the śara (versine), the celebrated Kerala Astronomer Nīlakaṇtha Somasutvan presents a detailed demonstration of how to sum an infinite geometric series. Though it is quite elementary compared to the various other infinite series expansions derived in the works of the Kerala School, we shall present an outline of Nīlakaṇtha's argument as it clearly shows how the notion of limit was well understood in the Indian mathematical tradition. Nīlakanṭha first states the general result ${ }^{26}$

$$
(a / r)+(a / r)^{2}+(a / r)^{3}+\ldots .=a /(r-1)
$$

where the left hand side is an infinite geometric series with the successive terms being obtained by dividing by a cheda (common divisor), r assumed to be greater than 1 . Nīlakaṇtha notes that this result is best demonstrated by considering a particular case, say $r=4$. Thus, what is to be demonstrated is that

$$
(1 / 4)+(1 / 4)^{2}+(1 / 4)^{3}+\ldots .=1 / 3
$$

Nīlakaṇtha first obtains the sequence of results

$$
1 / 3=1 / 4+1 /(4.3)
$$

[^11]\[

$$
\begin{aligned}
& 1 /(4.3)=1 /(4.4)+1 /(4.4 .3) \\
& 1 /(4.4 .3)=1 /(4.4 .4)+1 /(4.4 .4 .3)
\end{aligned}
$$
\]

and so on, from which he derives the general result

$$
1 / 3-\left[1 / 4+(1 / 4)^{2}+\ldots+(1 / 4)^{\mathrm{n}}\right]=\left(1 / 4^{\mathrm{n}}\right)(1 / 3)
$$

Nīlakaṇtha then goes on to present the following crucial argument to derive the sum of the infinite geometric series: As we sum more terms, the difference between $1 / 3$ and sum of powers of $1 / 4$ (as given by the right hand side of the above equation), becomes extremely small, but never zero. Only when we take all the terms of the infinite series together do we obtain the equality

$$
1 / 4+(1 / 4)^{2}+\ldots+(1 / 4)^{n}+\ldots=1 / 3
$$

Yuktibhāṣā proofs of infinite series for π and the trigonometric functions

One of the most celebrated works in Indian mathematics and astronomy, which is especially devoted to the exposition of yukti or proofs, is the Malayalam work Yuktibhāṣā (c.1530) of Jyesṭhadeva ${ }^{27}$. Jyesṭhadeva states that his work closely follows the renowned astronomical work Tantrasañgraha (c.1500) of Nīlakaṇtha Somasutvan and is intended to give a detailed exposition of all the mathematics required thereof. The first half of Yuktibhāṣā deals with various mathematical topics in seven chapters and the second half deals with all aspects of mathematical astronomy in eight chapters. The mathematical part includes a detailed exposition of proofs for the infinite series and fast converging approximations for π and the trigonometric functions, which were discovered by Mādhava (c.1375). We present an outline of these extremely fascinating proofs in Appendix III.

IV. Upapatti and "Proof"

Mathematics as a search for infallible eternal truths

The notion of upapatti is significantly different from the notion of 'proof' as understood in the Greek and the modern Western tradition of mathematics. The upapattis of Indian mathematics are presented in a precise language and carefully display all the steps in the argument and the general principles that are employed. But while presenting the argument they make no reference whatsoever to any fixed set of axioms or link the argument to 'formal deductions' performed from such axioms. The upapattis of Indian mathematics are not formulated with reference to a formal axiomatic deductive system. Most of the mathematical discourse in the Greek as well

[^12]as modern Western tradition is carried out with reference to some axiomatic deductive system. Of course, the actual proofs presented in mathematical literature are not presented in a formal system, but it is always assumed that the proof can be recast in accordance with the formal ideal.

The ideal of mathematics in the Greek and modern Western traditions is that of a formal axiomatic deductive system; it is believed that mathematics is and ought to be presented as a set of formal derivations from formally stated axioms. This ideal of mathematics is intimately linked with another philosophical presupposition-that mathematics constitutes a body of infallible absolute truths. Perhaps it is only the ideal of a formal axiomatic deductive system that could presumably measure up to this other ideal of mathematics being a body of infallible absolute truths. It is this quest for securing absolute certainty of mathematical knowledge, which has motivated most of the foundational and philosophical investigations into mathematics and shaped the course of mathematics in the Western tradition, from the Greeks to the contemporary times.

For instance, we may cite the popular mathematician philosopher of our times, Bertrand Russell, who declares, "I wanted certainty in the kind of way in which people want religious faith. I thought that certainty is more likely to be found in mathematics than elsewhere." In a similar vein, David Hilbert, one of the foremost mathematicians of our times declared, "The goal of my theory is to establish once and for all the certitude of mathematical methods." ${ }^{28}$

A recent book recounts how the continued Western quest for securing absolute certainty for mathematical knowledge originates from the classical Greek civilisation:

> The roots of the philosophy of mathematics, as of mathematics itself, are in classical Greece. For the Greeks, mathematics meant geometry, and the philosophy of mathematics in Plato and Aristotle is the philosophy of geometry. For Plato, the mission of philosophy was to discover true knowledge behind the veil of opinion and appearance, the change and illusion of the temporal world. In this task, mathematics had a central place, for mathematical knowledge was the outstanding example of knowledge independent of sense experience, knowledge of eternal and necessary truths. ${ }^{29}$

The Indian epistemological view

Indian epistemological position on the nature and validation of mathematical knowledge is very different from that in the Western tradition. This is brought out for instance by the Indian understanding of what an upapatti achieves. Gaṇeśa Daivajña declares in his preface to Buddhivilāsinī that:

[^13]Vyaktevā'vyaktasamjjñe yaduditamakhilamं nopapattimं vinā tannirbhrānto vā ṛte tā̀ं suganakasadasi prauḍhatā̀ naiti cāyam pratyakșà dṛ́syate sā karatalakalitādarśavat suprasannā
tasmādagryopapattim nigaditumakhilam utsahe buddhivrddhyai: ${ }^{30}$
Whatever is stated in the vyakta or avyakta branches of mathematics, without upapatti, will not be rendered nir-bhrānta (free from confusion); will not have any value in an assembly of mathematicians. The upapatti is directly perceivable like a mirror in hand. It is therefore, as also for the elevation of the intellect (buddhi-vrddhi), that I proceed to enunciate upapattis in entirety.

Thus the purpose of upapatti is: (i) To remove confusion in the interpretation and understanding of mathematical results and procedures; and, (ii) To convince the community of mathematicians. These purposes are very different from what a 'proof' in Western tradition of mathematics is supposed to do, which is to establish the 'absolute truth' of a given proposition.

In the Indian tradition, mathematical knowledge is not taken to be different in any 'fundamental sense' from that in natural sciences. The valid means for acquiring knowledge in mathematics are the same as in other sciences: Pratyaksa (perception), Anumāna (inference), Śabda or Āgama (authentic tradition). Gaṇeśa’s statement above on the purpose of upapatti follows the earlier statement of Bhā̀skarācārya-II. In the beginning of the golādhyāya of Siddhāntaśiromaṇi, Bhāskarācārya says:

> madhyādyam் dyusadā̀̇ yadatra ganitam tasyopapattim vinā praudhimim praudhasabhāsu naiti gaṇako nihsamśayo na svayam gole sā vimalā karāmalakavat pratyaksato drśyate tasmādasmyupapattibodhavidhaye golaprabandhodyatah ${ }^{31}$

Without the knowledge of upapattis, by merely mastering the ganita (calculational procedures) described here, from the madhyamādhikara (the first chapter of Siddhāntasiromani) onwards, of the (motion of the) heavenly bodies, a mathematician will not have any value in the scholarly assemblies; without the upapattis he himself will not be free of doubt (nihsamśaya). Since upapatti is clearly perceivable in the (armillary) sphere like a berry in the hand, I therefore begin the golādhyāya (section on spherics) to explain the upapattis.

As the commentator Nṛsimha Daivajña explains, 'the phala (object) of upapatti is pānditya (scholarship) and also removal of doubts (for oneself) which would enable one to reject wrong interpretations made by others due to bhrānti (confusion) or otherwise. ${ }^{32}$

[^14]In his Vāsanābhāsya on Siddhāntaśsiromani, Bhāskarācārya refers to the sources of valid knowledge (pramāna) in mathematical astronomy, and declares that

> yadyevamucyate gaṇitaskandhe upapattimān āgama eva pramānam³

Whatever is discussed in mathematical astronomy, the pramaṇa is authentic tradition or established text supported by upapatti.

Upapatti here includes observation. Bhāskarācārya, for instance, says that the upapatti for the mean periods of planets involves observations over very long periods.

Upapatti thus serves to derive and clarify the given result or procedure and to convince the student. It is not intended to be an approximation to some ideal way of establishing the absolute truth of a mathematical result in a formal manner starting from a given set of self-evident axioms. Upapattis of Indian mathematics also depend on the context and purpose of enquiry, the result to be demonstrated, and the audience for whom the upapatti is meant.

An important feature that distinguishes the upapattis of Indian mathematicians is that they do not employ the method of proof by contradiction or reductio ad absurdum. Sometimes arguments, which are somewhat similar to the proof by contradiction, are employed to show the non-existence of an entity, as may be seen from the following upapatti given by Kṛ̣ṇa Daivajña to show that "a negative number has no square root":

The square-root can be obtained only for a square. A negative number is not a square. Hence how can we consider its square-root? It might however be argued: 'Why will a negative number not be a square? Surely it is not a royal fiat'... Agreed. Let it be stated by you who claim that a negative number is a square as to whose square it is; surely not of a positive number, for the square of a positive number is always positive by the rule... not also of a negative number. Because then also the square will be positive by the rule... This being the case, we do not see any such number whose square becomes negative... ${ }^{34}$

Such arguments, known as tarka in Indian logic, are employed only to prove the nonexistence of certain entities, but not for proving the existence of an entity, which existence is not demonstrable (at least in principle) by other direct means of verification. In rejecting the method of indirect proof as a valid means for establishing existence of an entity which existence cannot even in principle be established through any direct means of proof, the Indian mathematicians may be seen as adopting what is nowadays referred to as the 'constructivist' approach to the issue of mathematical existence. But the Indian philosophers, logicians, etc., do much more than merely disallow certain existence proofs. The general Indian philosophical position is one of eliminating from logical discourse all reference to such aprasiddha entities, whose

[^15]existence in not even in principle accessible to all means of verification. ${ }^{35}$ This appears to be also the position adopted by the Indian mathematicians. It is for this reason that many an "existence theorem" (where all that is proved is that the nonexistence of a hypothetical entity is incompatible with the accepted set of postulates) of Greek or modern Western mathematics would not be considered significant or even meaningful by Indian mathematicians.

A new epistemology for Mathematics

Mathematics today, rooted as it is in the modern Western tradition, suffers from serious limitations. Firstly, there is the problem of 'foundations' posed by the ideal view of mathematical knowledge as a set of infallible absolute truths. The efforts of mathematicians and philosophers of the West to secure for mathematics the status of indubitable knowledge has not succeeded; and there is a growing feeling that this goal may turn out to be a mirage.

Apart from the problems inherent in the goals set for mathematics, there are also other serious inadequacies in the Western epistemology and philosophy of mathematics. The ideal view of mathematics as a formal deductive system gives rise to serious distortions. Some scholars have argued that this view of mathematics has rendered philosophy of mathematics barren and incapable of providing any understanding of the actual history of mathematics, the logic of mathematical discovery and, in fact, the whole of creative mathematical activity. According one philosopher of mathematics:

Under the present dominance of formalism, the school of mathematical philosophy which tends to identify mathematics with its formal axiomatic abstraction and the philosophy of mathematics with metamathematics, one is tempted to paraphrase Kant: The history of mathematics, lacking the guidance of philosophy, has become blind, while the philosophy of mathematics, turning its back on the most intriguing phenomena in the history of mathematics has become empty... The history of mathematics and the logic of mathematical discovery, i.e., the phylogenesis and the ontogenesis of mathematical thought, cannot be developed without the criticism and ultimate rejection of formalism... ${ }^{36}$

There is also the inevitable chasm between the ideal notion of infallible mathematical proof and the actual proofs that one encounters in standard mathematical practice, as portrayed in a recent book:

On the one side, we have real mathematics, with proofs, which are established by the 'consensus of the qualified'. A real proof is not checkable by a machine, or even by any mathematician not privy to the gestalt, the mode of thought of the particular field of mathematics in

[^16]which the proof is located. Even to the 'qualified reader' there are normally differences of opinion as to whether a real proof (i.e., one that is actually spoken or written down) is complete or correct. These doubts are resolved by communication and explanation, never by transcribing the proof into first order predicate calculus. Once a proof is 'accepted', the results of the proof are regarded as true (with very high probability). It may take generations to detect an error in a proof... On the other side, to be distinguished from real mathematics, we have 'meta-mathematics'... It portrays a structure of proofs, which are indeed infallible 'in principle'... [The philosophers of mathematics seem to claim] that the problem of fallibility in real proofs... has been conclusively settled by the presence of a notion of infallible proof in meta-mathematics... One wonders how they would justify such a claim. ${ }^{37}$

Apart from the fact that the modern Western epistemology of mathematics fails to give an adequate account of the history of mathematics and standard mathematical practice, there is also the growing awareness that the ideal of mathematics as a formal deductive system has had serious consequences in the teaching of mathematics. The formal deductive format adopted in mathematics books and articles greatly hampers understanding and leaves the student with no clear idea of what is being talked about.

Notwithstanding all these critiques, it is not likely that, within the Western philosophical tradition, any radically different epistemology of mathematics will emerge and so the driving force for modern mathematics is likely to continue to be a search for absolute truths and modes of establishing them, in one form or the other. This could lead to 'progress' in mathematics, but it would be progress of a rather limited kind.

If there is a major lesson to be learnt from the historical development of mathematics, it is perhaps that the development of mathematics in the Greco-European tradition was seriously impeded by its adherence to the cannon of ideal mathematics as laid down by the Greeks. In fact, it is now clearly recognised that the development of mathematical analysis in the Western tradition became possible only when this ideal was given up during the heydays of the development of "infinitesimal calculus" during $16^{\text {th }}$ and $18^{\text {th }}$ centuries. As one historian of mathematics notes:

It is somewhat paradoxical that this principal shortcoming of Greek mathematics stemmed directly from its principal virtue-the insistence on absolute logical rigour...Although the Greek bequest of deductive rigour is the distinguishing feature of modern mathematics, it is arguable that, had all the succeeding generations also refused to use real numbers and limits until they fully understood them, the calculus might never have been developed and mathematics might now be a dead and forgotten science. ${ }^{38}$

[^17]It is of course true that the Greek ideal has gotten reinstated at the heart of mathematics during the last two centuries, but it seems that most of the foundational problems of mathematics can also be perhaps traced to the same development. In this context, study of alternative epistemologies such as that developed in the Indian tradition of mathematics, could prove to be of great significance for the future of mathematics.

V. THE NATURE OF MATHEMATICAL OBJECTS

Another important foundational issue in mathematics is that concerning the nature of mathematical objects. Here again the philosophical foundations of contemporary mathematics are unsatisfactory, with none of the major schools of thought, namely Platonism, Formalism or Intuitionism, offering a satisfactory account of the nature of mathematical objects (such as numbers) and their relation to other objects in the universe.

In the Indian tradition, the ontological status of mathematical objects such as numbers and their relation to other entities of the world was investigated in depth by the different schools of Indian philosophy. In the Western tradition, on the other hand, there was no significant discussion on the nature of numbers after the Greek times, till the work of Frege in the nineteenth century. ${ }^{39}$ Recently, many scholars have explained that the Nyāya theory of numbers is indeed a highly sophisticated one, and may even prove in some respects superior to Frege's theory or the later developments, which have followed from it. ${ }^{40}$

In Nyāya-vaiśesika ontology, sam்khyā or number-property is assigned to the category guna (usually translated as quality) which resides in dravya (translated as substance) by the relation of samavāya (translated as inherence). A samikhyā such as dvitva (twoness or duality) is related to each of the objects of a pair by samavāya, and gives raise to the jñ̄āna or cognition: ‘ayamं dvitvavān: This (one) is (a) locus of two-ness'. Apart from this, the number-property, dvitva (two-ness) is related to both the objects together by a relation called paryāpti (completion) and gives rise to the cognition 'imau dvau: These are two'. So according to Nyāya, there are two ways in which number-properties such as one-ness or unity, two-ness or duality, three-ness, etc., are

[^18]related to a group of things numbered-firstly by the samavāya relation with each thing and secondly by the paryāpti relation with all the things together.

The paryāpti relation, connecting the number-property to the numbered things together, is taken by the Naiyāyikas to be a svarūpa-samibandha, where the two terms of the relation are identified ontologically. Thus, any number property such as twoness is not unique; there are indeed several "two-nesses", there being a distinct twoness associated (and identified) with every pair of objects. There are also the universals such as dvitvatva ("two-ness-ness"), which inhere in each particular twoness.

The Naiyāyika theory of number and paryāpti was developed during $16^{\text {th }}-19^{\text {th }}$ centuries, in the context of developments in logic. The fact that the Naiyāyikas employ the relation of paryāpti by which number-property such as two-ness resides in both the numbered objects together and not in each one of them, has led various scholars to compare the Nyāya formulation with Frege's theory of numbers. According to Bertrand Russell's version of this theory, there is a unique number two, which is the set of all sets of two elements (or set of all pairs of objects). Thus the number two is a set of 'second-order', somewhat analogous to the universal "two-ness-ness" (dvitvatva) of the Naiyāyikas.

The Naiyāyika theory, however, differs from the modern Western formulations in that the Naiyāyikas employ the concept of property (guña), which has a clearly specified ontological status, and avoid notions such as 'sets' whose ontology is dubious. Any number-property such as two-ness associated with a pair of objects is ontologically identified with the pair, or both the objects together, and not with any 'set' (let alone the set of all sets) constituted by such a pair.

Apart from their theory of numbers, the general approach of the Indian logicians is what may be referred to as 'intentional', as opposed to the 'extensional' approach of most of Western logic and mathematics. Indian logicians have built a powerful system of logic, which is able to handle properties as they are (with both their intentions and extensions) and not by reducing them to classes (which are pure extensions, with the intentions being abstracted away); perhaps it can also help in clarifying the nature of mathematical objects and mathematical knowledge.

It is widely accepted that:
Mathematics, as it exists today, is extensional rather than intentional. By this we mean that, when a propositional function enters into a mathematical theory, it is usually the extension of the function (i.e., the totality of entities or sets of entities that satisfy it) rather than its intention (i.e., its "context" or meaning) that really matters. This leaning towards extensionality is reflected in a preference for the language of classes or sets over the formally equivalent language of predicates with a single argument... ${ }^{41}$

[^19]If the elementary propositions of the theory are of the form $\mathrm{F}(\mathrm{x})$ (" x has F ", where F is the predicate with a single argument x which runs over a domain of 'individuals'), then it is but a matter of preference whether we use the language of predicates or of classes; each predicate corresponds to the class of all those individuals which satisfy the corresponding predicate. However the elementary propositions of Indian logic are of the form $x R y$, which relate any two 'entities' (not necessarily 'individuals') x, y by a relation R. The elementary proposition in Indian logic is always composed of a viśesya (qualificand x), viśeșaṇa or prakāra (qualifier y) and a saṁsarga (relation R). Here y may also be considered as a dharma (property) residing in x by the relation R. Using these and other notions, Indian logicians developed a precise technical language, based on Sanskrit, which is unambiguous and makes transparent the logical structure of any (complex) proposition and which is used in some sense like the symbolic formal languages of modern mathematical logic. ${ }^{42}$

The dominant view, concerning the nature of mathematics today, is essentially that adopted by Bourbaki:

Mathematics is understood by Bourbaki as a study of structures, or systematic of relations, each particular structure being characterised by a suitable set of axioms. In mathematics, as it exists at the present time, there are three great families of structures... namely algebraic structures, topological structures and ordinal structures. Any particular structure is to be thought of as inhering in a certain set...which functions as a domain of individuals for the corresponding theory. ${ }^{43}$

Bourbaki presents the whole of mathematics as an extension of the theory of sets. But if the study of abstract structures is indeed the goal of mathematics, there is no reason why this enterprise should necessarily be based on the theory of sets, unless one does not have the appropriate logical apparatus to handle philosophically better founded concepts such as properties, relations etc. The endeavour of the Indian logicians was to develop such a logical apparatus. This apparatus seems highly powerful and relevant for evolving a sounder theory of mathematical structures.

[^20]
APPENDIX I: LIST OF WORKS CONTAINING UPAPATTIS

The following are some of the important commentaries available in print, which present upapattis of results and procedures in mathematics and astronomy:

1. Bhāṣya of Bhāskara I (c.629) on Āryabhaṭīya of Āryabhaṭa (c.499), K.S.Shukla (ed.), New Delhi 1975.
2. Bhāsya of Govindasvāmin (c.800) on Mahābhāskarīya of Bhāskara I (c.629), T. S. Kuppanna Sastri (ed.), Madras 1957.
3. Vāsanābhāsya of Caturveda Pṛthūdakasvāmin (c.860) on Brahmasphutasiddhānta of Brahmagupta (c.628), Chs. I-III, XXI, Ramaswarup Sharma (ed.), New Delhi 1966; Ch XXI, Edited and Translated by Setsuro Ikeyama, Ind. Jour Hist. Sc. Vol. 38, 2003.
4. Vivaraṇa of Bhāskarācārya II (c.1150) on Śişadh̄̄vrddhidātantra of Lalla (c.748), Chandrabhanu Pandey (ed.), Varanasi 1981.
5. Vāsanā of Bhāskarācārya II (c.1150) on his own Bījaganita, Jivananda Vidyasagara (ed.), Calcutta 1878; Achyutananda Jha (ed.), Varanasi 1949, Rep. 1994.
6. Mitākșarā or Vāsanā of Bhāskarācārya II (c.1150) on his own Siddhāntaśiromaṇi, Bapudeva Sastrin (ed.) Varanasi 1866; Muralidhara Chaturveda (ed.), Varanasi 1981.
7. Vāsanābhāsya of Āmarāja (c.1200) on Khaṇ̣dakhādyaka of Brahmagupta (c.665), Babuaji Misra (ed.), Calcutta 1925.
8. Gaṇitabhūṣaṇa of Makkībhaṭa (c.1377) on Siddhāntaśekhara of Śrīpati (c.1039), Chs. I - III, Babuaji Misra (ed.), Calcutta 1932
9. Siddhāntadīpikā of Parameśvara (c.1431) on the Bhāşa of Govindasvāmin (c.800) on Mahābhāskarīya of Bhāskara I (c.629), T. S. Kuppanna Sastri (ed.), Madras 1957.
10.Āryabhatīyabhāṣya of Nīlakanṭha Somasutvan (c.1501) on Āryabhaț̄̄ya of Āryabhaṭa, K. Sambasiva Sastri (ed.), 3 Vols., Trivandrum 1931, 1932, 1957.
11.Yuktibhāṣā (in Malayalam) of Jyesṭhadeva (c.1530); Ganitādhyaya, Ramavarma Thampuran and A.R. Akhileswara Aiyer (eds.), Trichur 1947; K. Chandrasekharan (ed.), Madras 1953; Edited, along with an ancient Sanskrit version Ganitayuktibhāṣā and English Translation, by K.V.Sarma (in Press).
12.Yuktidīpikā of Śankara Vāriyar (c.1530) on Tantrasañgraha of Nīlakaṇ̣ha Somasutvan (c.1500), K.V. Sarma (ed.), Hoshiarpur 1977.
13.Kriyākramakarı̄ of Śankara Vāriyar (c.1535) on Līlāvatı̄ of Bhāskarācārya II (c.1150), K.V. Sarma (ed.), Hoshiarpur 1975.
14.Sūryaprakāśa of Sūryadāsa (c.1538) on Bhāskarācārya's Büjagaṇita (c.1150), Chs. I - V, Edited and translated by Pushpa Kumari Jain, Vadodara 2001.
15.Buddhivilāsin̄̄ of Gaṇeśa Daivajña (c.1545) on Līlāvat̄̄ of Bhāskarācārya II (c.1150), V.G. Apte (ed.), 2 Vols, Pune 1937.
16.Tīkkā of Mallāri (c.1550) on Grahalāghava of Gaṇeśa Daivajña (c.1520), Bhalachandra (ed.), Varanasi 1865; Kedaradatta Joshi (ed.), Varanasi 1981.
17.Bījanavānikurā or Bījapallavam of Krṣ̣na Daivajña (c.1600) on Bījaganita of Bhāskarācārya II (c.1150); V. G. Apte (ed.), Pune 1930; T. V. Radha Krishna Sastry (ed.), Tanjore 1958; Biharilal Vasistha (ed.), Jammu 1982.
18.Śiromañiprakāśa of Gaṇeśa (c.1600) on Siddhāntaśiromaṇi of Bhāskarācārya II (c.1150), Grahagaṇitādhyaya, V. G. Apte (ed.), 2 Vols. Pune 1939, 1941.
19.Gūḍhārthaprakāśa of Raṅganātha (c.1603) on Sūryasiddhānta, Jivananda Vidyasagara (ed.), Calcutta 1891; Reprint, Varanasi 1990.
20.Vāsanāvārttika, commentary of Nṛsimha Daivajña (c.1621) on Vāsanābhāșya of Bhāskarācārya II, on his own Siddhāntaśiromaṇi (c.1150), Muralidhara Chaturveda (ed.), Varanasi 1981.
21.Marīci of Munīśvara (c.1630) on Siddhāntaśiromaṇi of Bhāskarācārya (c.1150), Madhyamädhikara, Muralidhara Jha (ed.), Varanasi 1908; Grahagaṇitādhyaya, Kedaradatta Joshi (ed.), 2 vols. Varanasi 1964; Golādhyāya, Kedaradatta Joshi (ed.), Delhi 1988.
22.Āśayaprakāśa of Munīśvara (c.1646) on his own Siddhāntasārvabhauma, Ganitādhyaya Chs. I-II, Muralidhara Thakura (ed.), 2 Vols, Varanasi 1932, 1935; Chs. III-IX, Mithalal Ojha (ed.), Varanasi 1978.
23.Śésavāsanā of Kamalākarabhaṭa (c.1658) on his own Siddhāntatattvaviveka, Sudhakara Dvivedi (ed.), Varanasi1885; Reprint, Varanasi 1991.
24.Sauravāsanā of Kamalākarabhaṭ̣a (c.1658) on Sūryasiddhānta, Chs. I-X, Srichandra Pandeya (ed.), Varanasi 1991.
25.Ganitayuktayah, Tracts on Rationale in Mathematical Astronomy by various Kerala Astronomers (c. $16^{\text {th }}-19^{\text {th }}$ century), K.V. Sarma, Hoshiarpur 1979.

Appendix II: Upapatti of the kuțṬaka process

The kuttaka process

The kuttaka process for solving linear indeterminate equations has been known to Indian mathematicians at least since the time of Āryabhata (c. 499 AD). Consider the first order indeterminate equation of the form

$$
(a x \pm c) / b=y
$$

Here a, b, c are given positive integers, and the problem is to find integral values of x, y that satisfy the above equation; a is called the bhājya (dividend), b the bhājaka or $h \bar{a} r a$ (divisor), c the ksepa (interpolator). The ksepa is said to be dhana (additive) or r!̣a (subtractive) depending on whether the 'plus' or 'minus' sign is taken in the above equation. The numbers to be found, x, is called the gunaka (multiplier) and y the labdhi (quotient).

The process of solution of the above equation is referred to as the kuttaka process. kuttaka or kutț̄ākara (translated as 'pulveriser') is the name for the guṇaka (multiplier) x. Kṛ̣ṇa Daivajña explains:

Kuttaka is the gunaka; for, multiplication is referred to by terms (such as hanana, vadha, ghāta, etc.), which have connotation of "injuring", "killing" etc. By etymology and usage (yogarūdhi), this term (kuttaka) refers to a special multiplier. That number, which when multiplied by the given bhäjya and augmented or diminished by the given ksepa and divided by the given hāra, leaves no reminder, is called the kuttaka by the ancients. ${ }^{44}$

The procedure for solution of the above equation is explained as follows by Bhāskarācārya in his Bī̀jagaṇita; the relevant verses are 1-5 of the Kutṭakādhyāaya:45

1. In the first instance, as preparatory to carrying out the kuttaka process (or for finding the kutṭaka), the bhājya, hāra and ksepa are to be factored by whatever number possible. If a number, which divides both the bhäjya and hāra, does not divide the ksepa, then the problem is an ill-posed problem.
2. When the bhājya and hāra are mutually divided, the last remainder is their apavartana or apavarta (greatest common factor). The bhājya and hāra after being divided by that apavarta will be characterised as drdha (firm or reduced) bhājya and hāra.
3. Divide mutually the drḍha-bhājya and hāra, until unity becomes the remainder in the dividend. Place the quotients [of this mutual division] one below the other, the ksepa below them and finally zero at the bottom.

[^21]4. [In this vallī] the number just above the penultimate number is replaced by the product of that number with the penultimate number, with the last number added to it. Then remove the last term. Repeat the operation till only a pair of numbers is left. The upper one of these is divided [abraded] by the drdha-bhäjya, the remainder is the labdhi. The other (or lower) one being similarly treated with the (drḍha) hära gives the guna.
5. This is the operation when the number of quotients [in the mutual division of $d r d h a-b h a \bar{a} j y a$ and $d r d h a-h \bar{a} r a]$ is even. If the number of quotients be odd then the labdhi and guna obtained this way should be subtracted from their abraders (dṛ̣ha-bhājya and dṛ̣ha-hāra respectively) to obtain the actual labdhi and guna.

An Example

Let us explain the above procedure with an example that also occurs later in the upapatti provided by Kṛ̣ṇa Daivajña.

Let bhājya be 1211, hāra 497 and kṣepa 21. The procedure above outlined is for additive ksepa and the equation we have to solve is $1211 x+21=497 y$. The first step is to make bhājya and hāra mutually prime to each other (drdha) by dividing them by their greatest common factor (apavartānika). The apavartānka is found by the process of mutual division (the socalled Euclidian algorithm) to be 7. Now dividing bhäjya, hāra and ksepa by this apavartänka, we get the dṛ̣ha-bhäjya, $h \bar{a} r a$ and ksepa to be 173, 71 and 3 respectively. Thus, the problem is reduced to the solution of the equation $173 x+3=71 y$.

Now by mutually dividing the drdhabhājya and hāra, the vallī of quotients (which are the same as before) is formed, below which are set the ksepa 3 and zero. Following the procedure stated (in verse 4, above) we get the two numbers 117 , 48. Now since the number of quotients is even, we need to follow the procedure (of verse 4 above) and get the labdhi, $y=117$ and the guna, $x=48$.
497)1211(2

994
217)497(2

434
63)217(3

189
28)63(2

56 7)28(4
$\underline{28}$
$\underline{0}$

2	2	2	2	117	
2	2	2	48	48	$48 \times 2+21=117$
3	3	21	21		$21 \times 2+6=48$
2	6	6			$3 \times 6+3=21$
3	3				$2 \times 3+0=6$
0					

Now we shall present the upapatti of the above process as expounded by Krṣna Daivajña in his commentary on Bījagaṇita. For convenience of understanding we divide this long proof into several steps.

Proof of the fact that when the bhājya, hāra, and ksepa are factored by the same number, there is no change in the labdhi and guna ${ }^{46}$

It is well known that whatever is the quotient (labdhi) of a given dividend and divisor, the same will be the quotient if both the dividend and divisor are multiplied or factored by the same number. In the present case, the given bhäjya multiplied by some gunaka and added with the positive or negative ksepa is the dividend. The divisor is the given hāra. Now the dividend consists of two parts. The given bhäjya multiplied by the gunaka is one and the ksepa is the other. If their sum is the dividend and if the dividend and divisor are both factored by the same number then there is no change in the labdhi. Therefore, that factor from which the divisor is factored, by the same factor is the dividend, which is resolvable into two parts, is also to be factored. Now the result is the same whether we factor the two parts and add or add the two parts and then factor the sum. Just as, if the dividend 27 is factored by 3 we get 9 ; alternatively the dividend is resolved into the parts 9,18 which when factored by 3 give 3,6 and these when added gives the same factored dividend, viz., 9 . In the same way in other instances also, if the dividend is resolved into two or many parts and these are factored and added, then the result will be the same as the factored dividend.

Therefore, when we factor the given hāra, then the given bhājya multiplied by the guña should also be factored and so also the ksepa. Now guṇa being not known, the given bhäjya multiplied by the guna will be another unknown, whose factoring is not possible; still, if the given bhājya is factored and then multiplied by the guna, then we get the same result as factoring that part of the dividend which is gotten by multiplying the given bhājya by guna. For, it does not make a difference whether we factor first and then multiply or whether we multiply first and then factor. Thus, just as the given bhäjya multiplied by the guna will become one part in the resolution of the dividend, in the same way the factored bhājya multiplied by the same guna will become one part in the resolution of the factored dividend. The factored ksepa will be the second part. In this manner, the bhājya, hāra and ksepa all un-factored or factored will lead to no difference in the guna and labdhi, and hence for the sake of laghava (felicity of computation) it is said that 'the bhäjya, hāra and ksepa have to be factored...[verse 1]'. We will discuss whether the factoring is necessary or not while presenting the upapatti of 'Divide-mutually the dṛ̣ha-bhäjya and hāra... [verse 3]'.

Proof of the fact that if a number, which divides both bhājya and hāra, does not divide the ksepa, then the problem is ill-posed ${ }^{47}$

Now the upapatti of khilatva or ill-posed-ness: Here, when the divisor and dividend are factored, even though there is no difference in the quotient, there is always a

[^22]change in the remainder. The remainder obtained when (divisor and dividend) are factored, if multiplied by the factor, will give us the remainder for the original (unfactored) divisor and dividend. For instance, let the dividend and divisor be 21, 15; these factored by 3 give 7, 5. Now if the dividends are multiplied by 1 and divided by the respective divisors, the remainders are 6,2 ; when dividends are multiplied by 2 the remainders are 12,4 ; when multiplied by 3 they are 3,1 ; when multiplied by 4 they are 9,3 ; when multiplied by 5 , they are 0 , 0 . If we multiply by 6,7 etc. we get back the same sequence of remainders. Therefore, if we consider the factored divisor, 5 , the remainders are $0,1,2,3,4$ and none other than these. If we consider the unfactored divisor 15 , the remainders are $0,3,6,9,12$ and none other than these. Here, all the remainders have the common factor 3 .

Now, let us consider the ksepa. When the gunaka (of the given bhājya) is such that we have zero remainder (when divided by the given hāra), then (with ksepa) we will have zero remainder only when the ksepa is zero or a multiple of hāra by one, two, etc., and not for any other ksepa ... For all other gunakas which leave other remainders, (when multiplied by bhājya and divided by hāra) then (with ksepa) we have zero remainder when ksepa is equal to the śeṣa (remainder) or hāra diminished by śesa, depending on whether ksepa is additive or subtractive and not for any other ksepa, unless it is obtained from the above by adding hāra multiplied by one, two, etc. Thus, in either case of ksepa being equal to the śeṣa or hāra diminished by the śesa, since ksepa will be included in the class of sesas discussed in the earlier paragraph, the ksepa will have the same apavarta or factor (that bhājya and hāra have). This will continue to be the case when we add any multiple of hāra to the ksepa. Thus we do not see any such ksepa which is not factorable by the common factor of the bhäjya and hāra. Therefore, when the kșepa is not factorable in this way, with such a ksepa a zero remainder can never be obtained (when bhäjya is multiplied by any guna and divided by hāra after adding or subtracting the ksepa to the above product); because the ksepas that can lead to zero remainder are restricted as discussed above. With no more ado, it is indeed correctly said that the problem itself is ill-posed when the ksepa is not divisible by the common factor of bhājya and hāra.

Rationale for the procedure for finding apavartānika - the greatest common factor ${ }^{48}$

Now the rationale for the procedure for finding the apavartānka (greatest common factor). Here the apavartänka is to be understood as the factor such that when the divisor and dividend are factored by this, no further factorisation is possible. That is why they are said to be drdha (firm, prime to each other) when factored by this apavartänka. Now the procedure for finding that: When dividend and divisor are equal, the greatest common factor (G.C.F.) is equal to them as is clear even to the dull-witted. Only when they are different will this issue become worthy of investigation. Now consider 221, 195. Between them the smaller is 195 and the G.C.F. being its divisor cannot be larger than that. The G.C.F. will be equal to the smaller if the larger number is divisible by the smaller number, i.e., leaves no remainder when divided. When the remainder is 26 , then the G.C.F. cannot be equal to the smaller number 195, but will be smaller than that. Now let us look into that.

[^23]The larger number 221 is resolvable into two parts; one part is 195 which is divisible by the smaller number and another part is 26 , the remainder. Now among numbers less than the smaller number 195, any number which is larger than the remainder 26, cannot be the G.C.F.; for, the G.C.F. will have to divide both parts to which the large number 221 is resolved. Now the remainder part 26, itself, will be the G.C.F., if the smaller number 195 were divisible by 26 . As it is not, the G.C.F. is smaller than the remainder 26. Now let us enquire further.

The smaller number 195 is resolvable into two parts; 182 which is divisible by the first remainder 26 and the second remainder 13. Now, if a number between the earlier remainder 26 and the second remainder 13 is a G.C.F., then that will have to somehow divide 26 , and hence the part 182 ; but there is no way in which such a number can divide the other part 13 and hence it will not divide the smaller number 195.

Thus, among numbers less than the first remainder 26 , the G.C.F. can be at most equal to the second remainder 13. That too only if when the first remainder 26 is divided by the second remainder 13 there is no remainder... Now when the first remainder divided by the second remainder leaves a (third) remainder, then by the same argument, the G.C.F. can at most be equal to the third remainder. And, by the same upapatti, when it happens that the previous remainder is divisible by the succeeding remainder then that remainder is the greatest common factor. Thus is proved "When bhājya and hāra are mutually divided, the last (non-zero) remainder is their apavarta... (verse 2)".

Rationale for the kuttaka process when the kșepa is zero49

When there is no ksepa, if the bhājya is multiplied by zero and divided by hāra there is no remainder and hence zero itself is both guṇa and labdhi; or if we take guṇa to be equal to hāra, then since hāra is divisible by hāra we get labdhi equal to bhājya. Therefore, when there is no ksepa, then zero or any multiple of hāra by a desired number will be the guña and zero or the bhäjya multiplied by the desired number will be the labdhi. Thus here, if the guna is increased by an amount equal to hāra then the labdhi will invariably be increased by an amount equal to bhäjya ...

Now even when the ksepa is non-zero, if it be equal to hāra or a multiple of hāra by two, three, etc. then the guna will be zero, etc. as was stated before. For, with such a guna, there will be a remainder (when divided by hāra) only because of $k s e p a$. But if ksepa is also a multiple of hāra by one, two, etc. how can there arise a remainder? Thus for such a ksepa, the guna is as stated before. In the labdhi there will be an increase or decrease by an amount equal to the quotient obtained when the ksepa is divided by hāra, depending on whether ksepa is positive or negative...

[^24]Now when the ksepa is otherwise: The upapatti is via resolving the bhäjya into two parts. The part divisible by hāra is one. The remainder is the other. When bhājya and hāra are 16, 7 the parts of bhājya as stated are 14, 2. Now since the first part is divisible by hāra, if it is multiplied by any guṇa it will still be divisible by hāra. Now if the given ksepa when divided by the second part leaves no remainder, then the quotient obtained in this division is the guna (in case the ksepa is subtractive). For, when this guṇa multiplies the second part of bhājya and ksepa is subtracted then we get zero. Now if the ksepa is not divisible by the second part, then it is not simple to find the guna and we have to take recourse to other procedure.

When the bhājya is divided by ha$r a$, if 1 is the remainder, then the second part is also 1 only. Then whatever be the ksepa, if this remainder is multiplied by ksepa we get back the ksepa and so we can apply the above procedure and guna will be equal to $k s e p a$, when ksepa is subtractive, and equal to hāra diminished by ksepa, when the ksepa is additive. In the latter case, when the guṇa multiplies the second part of bhājya we get hāra diminished by kșepa. When we add ksepa to this we get hāra, which is trivially divisible by hāra. The labdhi will be the quotient, obtained while bhājya is divided by hāra, multiplied by guṇa in the case of subtractive kṣepa and this augmented by 1 in the case of additive ksepa.

Now when bhājya is divided by hāra the remainder is not 1 , then the procedure to find the guna is more complicated. Now take the remainder obtained in the division of bhājya by hāra as the divisor and hāra as the dividend. Now also if 1 is not the remainder then the procedure for finding the guna is yet more difficult. Now divide the first remainder by the second remainder. If the remainder is 1 , then if the first remainder is taken as the bhäjya and the second remainder is hāra, we can use the above procedure to get the guṇa as kṣepa or hāra diminished by kṣepa, depending on whether the ksepa is additive or subtractive. But if the remainder is larger than 1 even at this stage, then the procedure to find guna is even more complicated. Therefore when we go on doing mutual division, we want to arrive at remainder 1 at some stage. But how can that be possible if bhājya and hāra have a common factor, for the ultimate remainder in mutual division is the greatest common factor. Now if we factor the bhājya and hāra by the apavartānika (greatest common factor) then the remainders will also factored by that, and the final remainder will be unity. This is why it is necessary to first reduce both bhājya and hāra by their greatest common factor.

Now, even when the penultimate remainder considered as a bhājya gives unity as the remainder when divided by the next remainder (considered as hāra) and from that a corresponding guña can be obtained, how really is one to find the guña appropriate to the originally specified bhäjya. That is to be found by vyasta-vidhi, the reverse process or the process of working backwards. Now let the bhäjya be 1211, hāra 497 and ksepa 21. If $b h \bar{a} j y a$ and $h \bar{a} r a$ are mutually divided, the final remainder (or their G.C.F.) is 7. Factoring by this, the reduced bhājya, hāra and ksepa are 173, 71 and 3 respectively. Now by mutual division of these drḍha-bhājya and hāra, we get the vallī (sequence)
$50_{\text {Bïjapallavam commentary on Bījaganita, cited above, p.93-98. }}$.
of quotients 2, 2, 3, 2 and remainders $31,9,4,1$ and the various bhājyas and hāras as follows:

bhājya	173	71	31	9
hāra	71	31	9	4

Now in the last bhäjya 9, there are two parts: 8 which is divisible by hāra 4 and remainder 1. Using the procedure stated above, the guna will be the same as the ksepa 3, for the case of subtractive ksepa. The quotient 2 (of the division of the last bhäjya 9 by the hāra 4) multiplied by this guṇa 3 will give the labdhi 6. It is for this reason it is said that, "place the quotients one blow the other, the ksepa below them and finally zero at the bottom... (verse 3)." Here the "last quotient multiplied by below... (verse 4)" gives (the changed vallī as shown):
2
3
2
3 kṣepa
0

2	
2	
3	
2	
3	ksepa
0	
2	
2	
3	
6	labdhi
3	guṇa

Now keeping the same ksepa, we will discuss what will be the guna for the earlier pair of bhājya and hāra (given by) 31, 9. Here also the parts (to which the bhäjya is to be resolved) as stated above are 27, 4 . Now the first part, whatever be the number it is multiplied by, is divisible by hāra. Thus it is appropriate to look at the second part while considering the guṇa and labdhi. Thus we have the pair of bhäjya and hāra 4, 9. This is only the previous pair (of 9, 4) considered with the bhājya and hāra interchanged and this leads to an interchange of the guna and labdhi also. This can be seen as follows.

The bhäjya 9, multiplied by guṇa 3 leads to 27 (and this) diminished by ksepa 3 gives 24 (and this) divided by hāra 4 gives the labdhi 6 . Now by inverse process, this labdhi 6 used as a guna of the new bhäjya 4 , gives 24 (and this) augmented by ksepa 3 gives 27 (and this) is divisible by the new hāra 9 ; and hence 6 , the labdhi for the last pair (of bhājya and hāra) is the guṇa for the present. The labdhi (considering the second part alone) is 3 , the guna for the last pair. But for the given bhäjya (31), the labdhi for the earlier part (27) multiplied by the guna is to be added. The guna is the penultimate entry (6) in the valli. The labdhi for the first part is the quotient (3) set down above that. And these two when multiplied will give the labdhi (18) for the first part. This is to be added to the labdhi for the second part which is 3 the last entry in the vallī. Thus we get the new vall $\bar{\imath}$.

The last entry 3 is no long relevant and omitting that we get the valli. So it is said "multiply the penultimate number by the number just above and add the earlier term. Then reject the lowest... (verse 4)". Thus for the pair 31, 9 we have obtained by the inverse process (vyasta-vidhi) the labdhi and guṇa 21, 6 for additive (ksepa).

2
2
3
6 guṇa
3 labdhi

2
2
21 labdhi
6 guna
3 labdhi

2
2
21 labdhi
6 guṇa

Now for the still earlier pair of bhājya and hāra, namely 71, 31 and with the same $k s e p a$, let us enquire about the guna. Here again (the bhājya is divided into) parts 62, 9 as stated above, and keeping the first part aside we get the pair of bhājya and hāra, 9, 31. Again, since we have only interchanged the earlier bhājya and hāra, the same should happen to labdhi and guṇa. Thus we have as guṇa and labdhi 21, 6. Here also the labdhi of the first part is to be multiplied by the guna. The penultimate entry in the vall $\bar{\imath}, 21$, which is now the guna is multiplied by the 2 which is above it and which is the labdhi of the first part (62), and to the result 42 is added the labdhi 6 of the second part (9), and thus we get the total labdhi 48.

The last entry of the vallī as shown is removed as before, and we get the vallī. Thus by the inverse process we get for the pair of bhājya and hāra 71, 31, and for a subtractive ksepa, the labdhi and guna 48, 21.

2 48 labdhi 21 guṇa

Now the enquiry into the guna associated with the yet earlier pair of bhājya and hāra, 173, 71. Here also splitting (the bhājya) into two parts 142,31 as stated before, we get the bhājya and hāra 31, 71. Here again, we only have an interchange of bhājya and $h \bar{a} r a$ from what we discussed before and so by interchanging the labdhi and guṇa as also the (status of additivity or subtractivity of the) ksepa, we get the labdhi and guna 21, 48 for additive ksepa. Here again to get the labdhi of the first part, the penultimate (entry in the vall $\vec{\imath}$) 48 is multiplied by the entry 2 above it to get 96 .

To get the total labdhi, the last entry 21 is added to get 117. Removing the last entry of the valli which is no longer of use, we get the vallī as shown.

117 labdhi

48 guṇa

Thus for the main (or originally intended) pair of bhājya and hāra 173, 71 and with additive ksepa 3, the labdhi and guna obtained are 117,48 . Therefore it is said 'Repeat the operation till only two numbers are left... (verse [4])"

Except for the last bhājya, in all bhājyas, while getting the labdhi for the first part, the guna will be penultimate (in the vall $\vec{\imath}$) and hence it is said that the penultimate is multiplied by the number above. That is to be added to the last number which is the $l a b d h i$ for the second part (of the bhājya). For the last bhajjya, the last entry is the guña and there is no labdhi for the second part. Hence Ācārya has instructed the inclusion of zero below in the end (of the vall $\bar{\imath}$) so that the procedure is the same all through. Thus are obtained the labdhi and guṇa 117, 48.

Now, it has been seen earlier itself that if we increase guna by hāra, then labdhi will get increased by bhājya; and by the same argument, if the guña is diminished by hāra, the labdhi will get diminished by bhājya. Hence when the guna is larger than hāra, then once, twice or, whatever be the number of times it may be possible, the hāra is to be subtracted from that guṇa so that a smaller guṇa is arrived at. The labdhi is (reduced by a multiple of $b \bar{h} \bar{a} j y a$) in the same way. Hence it is said "The upper one of these is divided [abraded] by the $d r d ̣ h a-b h a \bar{j} y a$, the remainder is the labdhi. The other (or lower) one being similarly treated with the ($d \underline{r} d h a$) hāra gives the guna (verse 4)" (Ācārya) also emphasises the above principle (in a) later (verse of Bījagaṇita): "The
number of times that the guṇa and labdhi are reduced should be the same." If guṇa is reduced by hāra once, then the labdhi cannot be diminished by twice the bhājya and so on.

Labdhi and guṇa for even and odd number of quotients ${ }^{51}$

If it were asked how we are to know whether the labdhi and guna, as derived above for the main bhājya, correspond to additive or subtractive ksepa; for (it may be said that) in the case of the last and penultimate bhäjyas, it is not clear whether the guna is for additive or subractive ksepas, we state as follows. For the last pair of bhājya and hāra, the guna was derived straightaway taking the ksepa to be subtractive. Thus by the vyasta-vidhi (inverse process), for the penultimate pair the guna that we derived was for additive ksepa. For the third pair, the guna that we derived was for subtractive ksepa. It would be additive for the fourth and subtractive for the fifth pair. Now starting from the last pair, for each even pair, the guṇa derived would be for additive $k s e p a$ and for each odd pair, it would be for subtractive ksepa. Now for the main (or originally given) pair of bhājya and hāra, this even or odd nature is characterised by the even or odd nature of the number of quotients in their mutual division. Hence, if the number of quotients is even, then the labdhi, guna derived are for additive ksepa. If they are odd then the labdhi and guna derived for the main (or originally given) bhājya and hāra are for subtractive ksepa. Since the (Ācārya) is going to state a separate rule for subtractive ksepa, here we should present the process for additive ksepa only. Hence it is said, "what are obtained are (the labdhi and guna) when the quotients are even in number... (verse 5)".

When the number of quotients is odd, the labdhi and guna that are obtained are those valid for subtractive ksepa. But what are required are those for additive ksepa. Hence it is said that "If the number of quotients be odd then the labdhi and guna obtained this way should be subtracted from their abraders...(verse 5)." The rationale employed here is that the guna for subtractive ksepa, if diminished from hāra will result in the guṇa for additive ksepa.

This can also be understood as follows. Any bhäjya which on being multiplied by a guna is divisible (without remainder) by its hāra, the same will hold when it is multiplied by the (two) parts of the guna and divided by the hāra. The labdhi will be the sum of the quotients. If there is a reminder when one of the partial products is divided by the hāra, the other partial product will be divisible by the hāra when it increased by the same remainder - or else the sum of the two partial products will not be divisible by the $h \bar{a} r a$.

Now if the bhājya is multiplied by a guṇa equal to hāra and then divided by the hāra it is clearly divisible and the labdhi is also the same as bhäjya. Since the guna and $h \bar{a} r a$ are the same in this case, the parts of the guna are the same as that of the hāra. For example if bhājya is 17 , hāra 15 and guna is also 15 , then bhājya multiplied by guna is 225 and divided by hāra gives labdhi 17. If the two parts of guṇa are 1, 14,

[^25]then the partial products are 17,238 . The first, if divided by $h \bar{a} r a$, leaves remainder 2. If we reduce this by the same ksepa of 2, then it will be divisible, and labdhi will be 1. The other partial product, if increased by the same ksepa, becomes 240 and will be divisible by the hāra. The labdhi will be 16. Or, if the parts of the guna are 2, 13, the partial products are 34, 221. The first when divided by hāra gives the remainder 4, and if reduced by that, it becomes 30 and will be divisible by the hāra and labdhi will be 2 and the partial guña 2 . The other partial product 221, if increased by the same remainder, will be divisible by the hāra and the labdhi will be 15 and the partial guna 13. Or, if the parts of the guna are 3,12 , the partial products will be 51,204 . The first one when reduced by 6 and the second when increased by 6 , will be divisible. Thus for ksepa of 6 , the gunas when it is additive and subtractive are respectively the parts 12,3 . The labdhis are correspondingly 14,3 .

Hence the Ācārya states (later in Bījagaṇita) "The guṇa and labdhi obtained for additive ksepa, when diminished by their abraders, will result in those for negative
 starting with "Divide mutually..." and ending with "...to give the actual labdhi and gии̣а" (i.e., verses 3 to 5) has been demonstrated (upapannam).

In this Appendix we shall present an outline of the topics and proofs contained in the Mathematics part of the celebrated Malayalam text Yuktibhāṣa ${ }^{52}$ of Jyesṭhadeva (c.1530). This part is divided into seven Chapters, of which the last two, entitled Paridhi and Vyāsa (Circumference and Diameter) and jyānayanam (Computation of Sines), contain many important results concerning infinite series and fast convergent approximations for π and the trigonometric functions. In the preamble to his work, Jyestadeva states that his work closely follows Tantrasañgraha of Nīlakaṇ̣̣ha (c.1500) and gives all the mathematics necessary for the computation of planetary motions. The proofs expounded by Jyesthhadeva have been reproduced (mostly in the form of Sanskrit verses-kārikās) by Śankara Vāriyar in his commentaries Yuktidūpikāa ${ }^{53}$ on Tantrasañgraha and Kriyākramakarī ${ }^{54}$ on Līlāvatī. Since the later work is considered to be written around 1535 A.D., the time of composition of Yuktibhāṣā may reasonably be placed around 1530 A.D.

In what follows we shall present an outline of the mathematical topics and proofs given in Yuktibhāṣā, following closely the order which they appear in the text.

I. Parikarmāni (Mathematical Operations)

Following Tantrasanigraha an exposition of all the mathematics necessary thereof:
Numbers, place value, the eight operations involving increase and decrease, addition and subtraction.

Multiplication: Methods of multiplication, representation of the product as a ghātaksetra (rectangle), geometrical representation of different methods of multiplication involving adding, subtracting or factoring a number from the multiplicand, division.

Squaring: Algorithm for squaring, identifying the terms which occur at different odd and even places, other methods of squaring. Geometrical representation of the identity

$$
(a+b)^{2}=a^{2}+b^{2}+2 a b=4 a b+(a-b)^{2}
$$

[^26]Demonstration of the bhujā-koti-karna-ny $\bar{a} y a$ that the square of the diagonal of a rectangle is the sum of the squares of the sides (Pythagoras Theorem): This involves consideration of the following figure.

Geometrical representation of the identity

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

A demonstration of the result that the arithmetical progression of odd numbers 1,3 , $5, \ldots$ add up to the squares of successive natural numbers.

Square-root: Process of extracting square-root as the inverse of the process of squaring. Root of sum and difference of two squares in a process of iteration.

II. Daśapraśnam (Ten Questions)

To find a, b, given any two of the five quantities $a+b, a-b, a b, a^{2}+b^{2}, a^{2}-b^{2}$.

III Bhinnaganitam (Mathematics of Fractions)

Nature of a fraction, savarṇikaraṇa (reducing a set of fractions to same denomination - common denominator)

Addition, subtraction, multiplication and division of fractions, squares and squareroots.

IV Trairāśikam (Rule of Three)

Rule of three for the parts of a composite, inverse rule of three.
Almost all mathematical computations are pervaded by the trairaśika-nyāya and bhujā-koti-karṇa-nyāya.

V Kuttākārah (Linear Indeterminate Equation)

Calculation of ahargana (number of mean civil days elapsed since epoch), calculation of mean longitudes. Given the mean longitude of a planet, the corresponding ahargaṇa can be found by the kuṭtaka process.

The kutṭaka process (as given in Līlāvatī 242-246). Demonstration of the kutṭaka process by a consideration of the example (Līlāvat̄̄ 247)

$$
(221 x+65) / 195=y
$$

How the process of mutual division (of the bhäjya and bhājaka, 221 and 195) gives the apavartana (common factor) 13. Why there is no solution unless the ksepa (here 65) is also divisible by the common factor, and then the equation is reduced to

$$
(17 x+5) / 15=y
$$

Formation of the vallī (table of quotients of mutual division) and how the process of vall̄̄-upasaìh āra (sequence of reverse operations) leads step by step from solution of simpler problems ultimately to the solution of the original equation.

Application of kuttaka for the calculation of ahargana (number of mean civil days elapsed since epoch) and bhaganas (total number of completed revolutions) of mean Sun.

VI Paridhi and Vyāsa (Circumference and Diameter)

Another proof of bhujā - koṭi - karṇa - Nyāya

ABCD , square with its side equal to the bhujā, is placed on the north and the kotisquare BRPQ is placed on the south, such that the eastern sides of both fall on the same line and the south side of the bhujā -square lies along the north side of the kotisquare. Let bhujā be smaller than the koti.

Mark M on AP such that $\mathrm{AM}=\mathrm{BP}=$ koti. .
Hence $\mathrm{MP}=\mathrm{AB}=b h u j a \bar{a}$ and $\mathrm{MD}=\mathrm{MQ}=$ karna .
Cut along MD and MQ, such that the triangles AMD and PMQ just cling at D, Q respectively. Turn them around to coincide with DCT and QRT. Therefore

$$
\text { karṇa-square MDTQ = bhujā-square } \mathrm{ABCD}+k o t ̣ i \text {-square } \mathrm{BPQR}
$$

By computing successively the perimeters of circumscribing square, octagon, regular polygon of sides 16,32 etc using the following method:

$E A_{1} \mathrm{SO}$ is the quadrant of the square circumscribing the circle. EA_{1} is half the side of the circumscribing square. Let the karna OA_{1} meet the circle at C_{1} and ES meet OA_{1} at D_{1}. Draw the tangent $A_{2} C_{1} B_{2}$ parallel to $E S$ to meet $E A_{1}$ at A_{2}. Then $E A_{2}$ is half the side of the circumscribing regular octagon. Let OA_{2} meet the circle at C_{2} and EC_{1} meet OA_{2} at D_{2}. Draw $\mathrm{A}_{3} \mathrm{C}_{2} \mathrm{~B}_{3}$ parallel to EC_{1} to meet EA_{1} at A_{3}. Then EA_{3} is half the side of the regular polygon of 16 sides circumscribing the circle, and so on.
$\mathrm{EA}_{\mathrm{n}}=b_{\mathrm{n}} / 2$, where b_{n} is the bhuja or side of a regular polygon of $2^{\mathrm{n}+1}$ sides. $\mathrm{OA}_{\mathrm{n}}=k_{\mathrm{n}}$ the corresponding karna and $\mathrm{A}_{\mathrm{n}} \mathrm{D}_{\mathrm{n}}=a_{\mathrm{n}}$ the corresponding $\bar{a} b \bar{a} d h \bar{a}$ in the triangle OEA $_{n}$.

Now $b_{1} / 2=R$. Given b_{n} proceed as follows to calculate $\mathrm{b}_{\mathrm{n}+1}$:
$\mathrm{OA}_{\mathrm{n}}=k_{\mathrm{n}}$ is obtained by $k_{\mathrm{n}}{ }^{2}=R^{2}+\left(b_{\mathrm{n}} / 2\right)^{2}$
$\mathrm{A}_{\mathrm{n}} \mathrm{D}_{\mathrm{n}}=a_{\mathrm{n}}$ is obtained by $a_{\mathrm{n}}=(1 / 2)\left[k_{\mathrm{n}}-\left\{R^{2}-\left(b_{\mathrm{n}} / 2\right)^{2}\right\} / k_{\mathrm{n}}\right]$
Finally $b_{\mathrm{n}+1}$ is obtained by
$\left(b_{\mathrm{n}}-b_{\mathrm{n}+1}\right) / 2=\mathrm{A}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}+1}=\mathrm{EA}_{\mathrm{n}} . \mathrm{A}_{\mathrm{n}} \mathrm{C}_{\mathrm{n}} / \mathrm{A}_{\mathrm{n}} \mathrm{D}_{\mathrm{n}}=\left(b_{\mathrm{n}} / 2\right)\left(k_{\mathrm{n}}-R\right) / a_{\mathrm{n}}$

To obtain the circumference without calculating square-roots

Consider a quadrant of the circle, inscribed in a square and divide a side of the square, which is tangent to the circle, into a large number of equal parts. The more the number of divisions the better is the approximation to the circumference.

$C / 8$ (one eighth of the circumference) is approximated by the sum of the $j y \bar{a} r d h a s$ (half-chords) b_{i} of the arc-bits to which the circle is divided by the karnas which join the points which divide tangent are joined to the centre of the circle. Let k_{i} be the length of these karnas.

$$
b_{\mathrm{i}}=\left(R / k_{\mathrm{i}}\right) d_{\mathrm{i}}=\left(R / k_{\mathrm{i}}\right)\left[(R / n) R / k_{\mathrm{i}+1}\right]=(R / n) R^{2} / k_{\mathrm{i}} k_{\mathrm{i}+1}
$$

Hence

$$
\begin{aligned}
& \pi / 4=C / 8 R \approx(1 / n) \sum_{\mathrm{i}=0}^{\mathrm{n}-1} R^{2} / k_{\mathrm{i}} k_{\mathrm{i}+1} \approx(1 / n) \sum_{\mathrm{i}=0}^{\mathrm{n}-1}\left(R / k_{\mathrm{i}}\right)^{2} \\
& \pi / 4 \approx(1 / n) \sum_{\mathrm{i}=0}^{\mathrm{n}-1} R^{2} /\left[R^{2}+i^{2}(R / n)^{2}\right]
\end{aligned}
$$

Series expansion of each term in the right hand side is obtained by iterating

$$
a / b=a / c-(a / b)(b-c) / c
$$

which leads to

$$
a / b=a / c-(a / c)(b-c) / c+(a / c)((b-c) / c)^{2}+\ldots
$$

This (binomial) series expansion is also justified later by showing how the partial sums in the following series converge to the result.

$$
100 / 10=100 / 8-(100 / 8)(10-8) / 8+100 / 8[(10-8) / 8]^{2}-\ldots .
$$

Thus

$$
\pi / 4 \approx 1-(1 / n)^{3} \sum_{\mathrm{i}=1}^{\mathrm{n}} i^{2}+(1 / n)^{5} \sum_{\mathrm{i}=1}^{\mathrm{n}} i^{4}-\ldots .
$$

When n becomes very large, this leads to the series given in the rule of Mādhava, Vyāse vāridhnihate... ${ }^{55}$

$$
C / 4 D=\pi / 4=1-1 / 3+1 / 5-\ldots .
$$

Sama-ghāta-sañkalita - Sums of powers of natural numbers

In the above derivation, the following estimate was been employed for the sama-ghāta-sañkalita of order k , for large n :

$$
S_{\mathrm{n}}{ }^{(\mathrm{k})}=1^{\mathrm{k}}+2^{\mathrm{k}}+3^{\mathrm{k}}+\ldots .+n^{\mathrm{k}} \approx n^{\mathrm{k}+1} /(k+1)
$$

This is proved first for the case of mūla- sankalita

$$
\begin{aligned}
S_{\mathrm{n}}^{(1)} & =1+2+3+\ldots .+n \\
& =[n-(n-1)]+[n-(n-2)]+\ldots .+n=n^{2}-S_{\mathrm{n}-1}{ }^{(1)}
\end{aligned}
$$

Hence, for large n,

$$
S_{\mathrm{n}}^{(1)} \approx n^{2} / 2
$$

Then, for the varga-sankalita and the ghana-sanikalita the following estimates are proved for large n :

$$
\begin{aligned}
& S_{\mathrm{n}}^{(2)}=1^{2}+2^{2}+3^{2}+\ldots .+n^{2} \approx n^{3} / 3 \\
& S_{\mathrm{n}}^{(3)}=1^{3}+2^{3}+3^{3}+\ldots .+n^{3} \approx n^{4} / 4
\end{aligned}
$$

In each case, the derivation is based on the result

$$
n S_{\mathrm{n}}^{(\mathrm{k}-1)}-S_{\mathrm{n}}^{(\mathrm{k})}=S_{\mathrm{n}-1}^{(\mathrm{k}-1)}+S_{\mathrm{n}-2}^{(\mathrm{k}-1)}+\ldots .+S_{1}^{(\mathrm{k}-1)}
$$

Now if we have already shown that $S_{\mathrm{n}}{ }^{(\mathrm{k}-1)} \approx n^{\mathrm{k}} / k$, then

$$
\begin{aligned}
n S_{\mathrm{n}}^{(\mathrm{k}-1)}-S_{\mathrm{n}}^{(\mathrm{k})} & \approx(n-1)^{\mathrm{k}} / k+(n-2)^{\mathrm{k}} / k+\ldots . . \\
& \approx S_{\mathrm{n}}^{(\mathrm{k})} / k
\end{aligned}
$$

[^27]Hence, for the general sama-ghāta-sankalita, we get the estimate

$$
S_{\mathrm{n}}^{\mathrm{k}} \approx n^{\mathrm{k}+1} /(k+1)
$$

Vāra-sañkalita - Repeated sums

The vāra-sañkalita, or repeated sums, are defined as follows:

$$
\begin{aligned}
& V_{\mathrm{n}}^{(1)}=S_{\mathrm{n}}^{(1)}=1+2+\ldots .+n \\
& V_{\mathrm{n}}^{(\mathrm{r})}=V_{1}^{(\mathrm{r}-1)}+V_{2}^{(\mathrm{r}-1)}+\ldots .+V_{\mathrm{n}}^{(\mathrm{r}-1)}
\end{aligned}
$$

It is shown that, for large n

$$
\Sigma_{\mathrm{n}}{ }^{\mathrm{r})} \approx n^{\mathrm{r}+1} /(r+1)!
$$

Cāpīkaraṇa - Determination of the arc

This can be done by the series given by the rule ${ }^{56}$ Istajajaātrijyayorghātāt..., which is derived in the same way as the above series for $C / 8$:

$$
R \theta=R(\sin \theta / \cos \theta)-(R / 3)(\sin \theta / \cos \theta)^{3}+(R / 5)(\sin \theta / \cos \theta)^{5}-\ldots
$$

It is said that $\sin \theta \leq \cos \theta$ is a necessary condition for the terms in the above series to progressively lead to the result. Using the above for $\theta=\pi / 6$, leads to the following:

$$
C=\left(12 D^{2}\right)^{1 / 2}\left(1-1 / 3.3+1 / 3^{2} .5-1 / 3^{3} .7+\ldots .\right)
$$

Antya-saimskāra - Correction term to obtain accurate circumference

Let us set

$$
C / 4 D=\pi / 4=1-1 / 3+1 / 5-\ldots \pm 1 /(2 n-1)-(\pm) 1 / a_{\mathrm{n}}
$$

Then the samiskāra-hāraka (correction divisor), a_{n} will be accurate if

$$
1 / a_{\mathrm{n}}+1 / a_{\mathrm{n}+1}=1 /(2 n+1)
$$

This leads to the successive approximations: ${ }^{57}$

$$
\pi / 4 \approx 1-1 / 3+1 / 5-\ldots \pm 1 /(2 n-1)-(\pm) 1 / 4 n
$$

[^28]\[

$$
\begin{aligned}
\pi / 4 & \approx 1-1 / 3+1 / 5-\ldots \pm 1 /(2 n-1)-(\pm) 1 /[4 n+(4 / 4 n)] \\
& =1-1 / 3+1 / 5-\ldots \pm 1 /(2 n-1)-(\pm) n /\left(4 n^{2}+1\right)
\end{aligned}
$$
\]

Later at the end of the chapter, the rule, ${ }^{58}$ Ante samasamikhyādalavargah..., is cited as the sūksmatara-samiskāra, more accurate correction: ${ }^{59}$

$$
\pi / 4 \approx 1-1 / 3+1 / 5-\ldots \pm 1 /(2 n-1)-(\pm)\left(n^{2}+1\right) /\left(4 n^{3}+5 n\right)
$$

Transformation of series

The above correction terms can be used to transform the series for the circumference as follows::

$$
C / 4 D=\pi / 4=\left[1-1 / a_{1}\right]-\left[1 / 3-1 / a_{1}-1 / a_{2}\right]+\left[1 / 5-1 / a_{2}-1 / a_{3}\right] \ldots
$$

It is shown that, using the second order correction terms, we obtain the following series given by the rule ${ }^{60}$ Samapañcāhatayoh...

$$
\mathrm{C} / 16 \mathrm{D}=1 /\left(1^{5}+4.1\right)-1 /\left(3^{5}+4.3\right)+1 /\left(5^{5}+4.5\right)-\ldots .
$$

It is also noted that by using merely the lowest order correction terms, we obtain the following series given by the rule ${ }^{61}$ Vyāsad vāridhinihatāt...

$$
C / 4 D=3 / 4+1 /\left(3^{3}-3\right)-1 /\left(5^{3}-5\right)+1 /\left(7^{3}-7\right)-\ldots .
$$

Other series expansions

It is further noted that to calculate the circumference one can also employ the following series as given in the rules ${ }^{62}$ Dvyādiyujā̀̀ vā krtayo... and Dvyādes'caturādervā...

58 Kriyākramakarī, cited earlier p.390, Yuktid̄̄pikā, cited earlier, p.103.
${ }^{59}$ These correction terms are successive convergents of the continued fraction

$$
1 / a_{\mathrm{n}}=1 / 4 n+\quad 4 / 4 n+\quad 16 / 4 n+\quad \ldots .
$$

By using the third order correction term after 25 terms in the series, we get the value of π correct to eleven decimal places, which is what is given in the rule Vibudhanetragajāhihutāśana..., attributed to Mādhava by Nīlakaṇtha (see his Āryabhaṭ̄yabhāṣya, Gaṇitapāda, K.Sambasiva Sastri (ed.), Trivandrum 1930, p. 56; see also Kriyākramakarı̄, cited earlier, p. 377):

$$
\pi \approx 2827433388233 / 900000000000=3.141592653592222 \ldots
$$

${ }^{60}$ Kriyākramakarī, cited earlier, p.390; Yuktidīpikā, cited earlier, p.102.
61 Kriyākramakarī, cited earlier, p.390; Yuktid̄̄pikā, cited earlier, p.102.
62 Kriyākramakarī, cited earlier, p.390; Yuktid̄̄pikā, cited earlier, p.103.

$$
\begin{aligned}
& C / 4 D=1 / 2+1 /\left(2^{2}-1\right)-1 /\left(4^{2}-1\right)+1 /\left(6^{2}-1\right)-\ldots \\
& C / 8 D=1 /\left(2^{2}-1\right)+1 /\left(6^{2}-1\right)+1 /\left(10^{2}-1\right)-\ldots \\
& C / 8 D=1 / 2-1 /\left(4^{2}-1\right)-1 /\left(8^{2}-1\right)-1 /\left(12^{2}-1\right)-\ldots
\end{aligned}
$$

For the first series, a correction term is also noted:

$$
\begin{aligned}
C / 4 D & \approx 1 / 2+1 /\left(2^{2}-1\right)-1 /\left(4^{2}-1\right)+1 /\left(6^{2}-1\right)-\ldots \\
& \pm 1 /\left((2 n)^{2}-1\right)-(\pm) 1 /\left[2(2 n+1)^{2}+4\right]
\end{aligned}
$$

VII Jyānayanam (Computation of Sines)

Jyā, koṭi and śara $-R \sin x, R \cos x$ and $R \mathrm{versin} x=R(1-\cos x)$
Construction of an inscribed regular hexagon with side equal to the radius, which gives $R \sin (\pi / 6)$

The relations

$$
\begin{aligned}
& R \sin (\pi / 2-x)=R \cos x=R(1-\operatorname{versin} x) \\
& R \sin (x / 2)=1 / 2\left[(R \sin x)^{2}+(R \mathrm{versin} x)^{2}\right]^{1 / 2}
\end{aligned}
$$

Using the above relations several sines can be calculated starting from the following:

$$
\begin{aligned}
& R \sin (\pi / 6)=\mathrm{R} / 2 . \\
& R \sin (\pi / 4)=\left(R^{2} / 2\right)^{1 / 2} .
\end{aligned}
$$

Accurate determination of the pathita-jyā (enunciated or tabulated sine values) when a quadrant of the circle is divided into 24 equal parts of $3^{\circ} 45^{\prime}=225^{\prime}$ each. This involves estimating successive sine differences.

To find the sines of intermediate values, a first approximation is
$R \sin (x+h) \approx R \sin \mathrm{x}+h R \cos x$
A better approximation as stated in the rule ${ }^{63}$ Istadoḥkotidhanusoh... is the following:
$R \sin (x+h) \approx R \sin x+(2 / \Delta)(R \cos x-(1 / \Delta) R \sin x)$
$R \cos (x+h) \approx R \cos x-(2 / \Delta)(R \sin x+(1 / \Delta) R \cos x)$
where $\Delta=2 R / h$.

63 Tantrasañgraha, 2.10-14.

Given an arc $s=R x$, divide it into n equal parts and let the piṇ̣a-jyās B_{j}, and śaras $S_{\mathrm{j}-1 / 2}$, with $j=0,1 \ldots \mathrm{n}$, be given by

$$
\begin{aligned}
& B_{\mathrm{j}}=R \sin (j x / n) \\
& S_{\mathrm{j}-1 / 2}=R \operatorname{vers}[(j-1 / 2) x / n]
\end{aligned}
$$

If α be the samasta- $j y \bar{a}$ (total chord) of the arc s / n, then

$$
\left(B_{\mathrm{j}+1}-B_{\mathrm{j}}\right)-\left(B_{\mathrm{j}}-B_{\mathrm{j}-1}\right)=(\alpha / R)\left(S_{\mathrm{j}-1 / 2}-S_{\mathrm{j}+1 / 2}\right)=-(\alpha / R)^{2} B_{\mathrm{j}}
$$

for $j=1,2, \ldots n$. Hence

$$
\begin{aligned}
S_{\mathrm{n}-1 / 2}-S_{1 / 2} & =(\alpha / R)\left(B_{1}+B_{2}+\ldots+B_{\mathrm{n}-1}\right) \\
B_{\mathrm{n}}-n B_{1} & =-(\alpha / R)^{2}\left[B_{1}+\left(B_{1}+B_{2}\right)+\ldots+\left(B_{1}+B_{2}+\ldots+B_{\mathrm{n}-1}\right)\right] \\
& =-(\alpha / R)\left(S_{1 / 2}+S_{3 / 2}+\ldots .+S_{\mathrm{n}-1 / 2}-n S_{1 / 2}\right)
\end{aligned}
$$

If B and S are the $j y \bar{a}$ and sara of the arc s, in the limit of very large n, we have as a first approximation

$$
B_{\mathrm{n}} \approx B, B_{\mathrm{j}} \approx j s / n, S_{\mathrm{n}-1 / 2} \approx S, S_{1 / 2} \approx 0 \text { and } \alpha \approx s / n .
$$

Hence

$$
\begin{aligned}
& S \approx(1 / R)(s / n)^{2}(1+2+\ldots .+n-1) \approx s^{2} / 2 R \\
& B \approx n(s / n)-(1 / R)^{2}(s / n)^{3}[1+(1+2)+\ldots+(1+2+\ldots+n-1)] \approx s-s^{3} / 6 R^{2}
\end{aligned}
$$

Iterating these results we get successive approximations, leading to the following series given by the rule ${ }^{64}$ Nihatya cāpavargeṇa...:

$$
\begin{aligned}
& R \sin (s / R)=B=\mathrm{R}\left[(s / R)-(s / R)^{3} / 3!+(s / R)^{5} / 5!-\ldots\right] \\
& \quad R-R \cos (s / R)=S=R\left[(s / R)^{2}-(s / R)^{4} / 4!+(s / R)^{6} / 6!-\ldots\right]
\end{aligned}
$$

While carrying successive approximations, the following result for vāra-sañkalitas (repeated summations) is used:

$$
\sum_{\mathrm{j}=1}^{\mathrm{n}} j(j+1) \ldots(j+k-1) / k!=n(n+1) \ldots(n+k) /(k+1)!\approx n^{\mathrm{k}+1} /(k+1)!
$$

[^29]The above series for $j y \bar{a}$ and śara can be employed to calculate them, without using the tabular values, by using the sequence of numerical parameters given by the formulae, ${ }^{65}$ vidvān etc and stena etc. For example, if a quadrant of a circle is assigned the measure $q=5400$ ', then for a given arc s, the corresponding $j y \bar{a} B$ is given accurately to the third minute by: ${ }^{66}$

$$
B \approx s-(s / q)^{3}\left(u_{3}-(s / q)^{2}\left(u_{5}-(s / q)^{2}\left(u_{7}-(s / q)^{2}\left(u_{9}-(s / q)^{2} u_{11}\right)\right)\right)\right)
$$

where

$$
\begin{aligned}
& u_{3}=2220,39^{\prime \prime} 40^{\prime} \prime \prime, u_{5}=273^{\prime} 57^{\prime}{ }^{\prime} 47^{\prime \prime \prime}, u_{7}=16^{\prime} 05^{\prime} \prime 41^{\prime \prime \prime}, u_{9}=33^{\prime} \prime 06^{\prime \prime \prime} \\
& \text { and } u_{11}=44^{\prime \prime \prime}
\end{aligned}
$$

Accurate sine values can be used to find an accurate estimate of the circumference given a certain value of the diameter.

Series for the square of sine given by the rule ${ }^{67}$ Nihatya cāpavargena...

$$
\operatorname{Sin}^{2} x=x^{2}-x^{4} /\left(2^{2}-2 / 2\right)+x^{6} /\left(2^{2}-2 / 2\right)\left(3^{2}-3 / 2\right)-\ldots
$$

These squares can also be directly computed using the formulae ${ }^{68}$ Saurirjayati...

Computation of sines without using the radius

Two proofs of the jīve-paraspara-nyāya
$\operatorname{Sin}(x \pm y)=\sin x \cos y \pm \cos x \sin y$
$\operatorname{Cos}(x \pm y)=\cos x \cos y-(\pm) \sin x \sin y$
Later, another proof is given using the formulae for the product of diagonals in a cyclic quadrilateral. It is noted that the jīve-paraspara-nyāya can be used to compute tabular sines.

Cyclic Quadrilateral

First a derivation of the formulae for the area of a triangle, its altitude and $\bar{a} b \bar{a} d h \bar{a} s$, the two intercepts of the base formed by the altitude from the vertex to the base.

[^30]A derivation of the following formulae for the product and difference in the squares of two chords, in terms of the chords associated with the sum and difference of the corresponding arcs:
$\sin ^{2} x-\sin ^{2} y=\sin (x+y) \sin (x-y)$
$\sin x \sin y=\sin ^{2}[(x+y) / 2]-\sin ^{2}[(x-y) / 2]$
Later, it is noted that these formulae can also be used to calculate tabular sines without using the radius.

Diagonals of a cyclic quadrilateral

If a, b, c, d are the sides of a cyclic quadrilateral and x, y, z are the three diagonals, then the above result on the product and difference of the squares of two chords is used to prove:

$$
\begin{aligned}
& a . b+c . d=y . z \\
& a . d+b . c=z . x \\
& a . c+b . d=x . y
\end{aligned}
$$

Hence

$$
\begin{aligned}
& x=[(a c+b d)(a d+b c) /(a b+c d)]^{1 / 2} \\
& y=[(a b+c d)(a c+b d) /(a d+b c)]^{1 / 2} \\
& z=[(a b+c d)(a d+b c) /(a c+b d)]^{1 / 2}
\end{aligned}
$$

It is noted that only three diagonals are possible.

Area of a cyclic quadrilateral

In the case of a triangle, by making use of the jīve-paraspara-nyāya, it is shown later that

Altitude $=$ Product of the two adjacent sides/Circum-diameter
Based on this, it is shown that
Area of a cyclic quadrilateral $=(x . y \cdot z) / 4 R$

Area of a cyclic quadrilateral in terms of the sides, without using the diagonals or the circum-radius (Līlāvat̄̄ 169)

Draw altitudes from two corners to the opposite diagonal. Then
Area $=($ Sum of altitudes $)($ Diagonal $) / 2$
$(\text { Sum of altitudes })^{2}=(\text { Other diagonal })^{2}$ - (Distance between feet of the altitudes) ${ }^{2}$

$$
\begin{aligned}
(\text { Area })^{2} & =\left[x^{2}-\left\{\left(a^{2}+c^{2}\right)-\left(b^{2}+d^{2}\right)\right\}^{2} / 4 y^{2}\right]\left(y^{2} / 4\right) \\
& =(s-a)(s-b)(s-c)(s-d)
\end{aligned}
$$

where, $s=(a+b+c+d) / 2$ is the semi-perimeter of the quadrilateral ${ }^{69}$.

[^31]Similar proof is given of the formula for the area of a triangle

$$
\text { Area of a triangle }=[s(s-a)(s-b)(s-c)]^{1 / 2}
$$

Calculation of the of the śaras when two circles intersect (as given in Aryabhatīya, Ganitapāda 18)

Calculation of the two shadows from the same gnomon at different times (as given in Līlāvatī 232.)

Surface area of a sphere

Draw large number of circles at equal distances parallel to the East-West great circle. The radii of these circles are the sines B_{j} of the arcs of the great circle NWS. If h is the perpendicular distance between these circles

$$
\text { Area } \approx 2 \sum_{j=1}^{n} 2 \pi B_{\mathrm{j}} h
$$

If Δ_{j} are sine differences, and α is the chord of each arc bit, then

$$
B_{\mathrm{j}}=\left(\Delta_{\mathrm{j}}-\Delta_{\mathrm{j}+1}\right)(R / \alpha)^{2}
$$

Since when n is very large, $\Delta_{\mathrm{n}} \approx 0, \Delta_{1} \approx \alpha \approx h$,

$$
\text { Area }=4 \pi R^{2}
$$

Volume of a sphere

First, a proof of the formula for the area of a circle.
Area $=(1 / 2)$ Circumference \times Radius
Divide the sphere into various slices parallel to the East-West circle as before. Then

$$
\text { Volume } \approx \sum_{\mathrm{j}} \pi B_{\mathrm{j}}^{2} h=\sum_{\mathrm{j}} \pi h\left[(2 R)^{2} / 2-j^{2} h^{2}\right]
$$

Since

$$
h=2 R / n
$$

and

$$
B_{\mathrm{j}}{ }^{2}=\left[(2 R)^{2} / 2-j^{2} h^{2}\right],
$$

we get

$$
\begin{aligned}
\text { Volume } & \approx 4 \pi R^{3}-\pi(2 R / n)^{3} \sum_{j=1}^{n} j^{2} \\
& =(4 / 3) \pi R^{3}
\end{aligned}
$$

[^0]: ${ }^{1}$ We may cite the following standard works: B. B. Datta and A. N. Singh, History of Hindu Mathematics, 2 Parts, Lahore 1935, 1938, Reprint, Delhi 1962; C. N. Srinivasa Iyengar, History of Indian Mathematics, Calcutta 1967; A. K. Bag, Mathematics in Ancient and Medieval India, Varanasi 1979; T. A. Saraswati Amma, Geometry in Ancient and Medieval India, Varanasi 1979; G. C. Joseph, The Crest of the Peacock: The Non-European Roots of Mathematics, $2^{\text {nd }}$ Ed., Princeton 2000.

[^1]: 2 C.B.Boyer, The History of Calculus and its Conceptual development, New York 1949, p.61-62. As we shall see in the course of this article, Boyer's assessment - that the Indian mathematicians did not reach anywhere near the development of calculus or mathematical analysis, because they lacked the sophisticated methodology developed by the Greeks - seems to be thoroughly misconceived. In fact, in stark contrast to the development of mathematics in the Greco-European tradition, the methodology of Indian mathematical tradition seems to have ensured continued and significant progress in all branches of mathematics till barely two hundred years ago; it also led to major discoveries in calculus or mathematical analysis, without in anyway abandoning or even diluting its standards of logical rigour, so that these results, and the methods by which they were obtained, seem as much valid today as at the time of their discovery.
 3^{3} Morris Kline, Mathematical Thought from Ancient to Modern Times, Oxford 1972, p. 190.

[^2]: 4 André Weil, Number Theory: An Approach through History from Hammurapi to Legendre, Boston 1984, p.24. It is indeed ironical that Prof. Weil has credited Fermat, who is notorious for not presenting any proof for most of the claims he made, with the realisation that mathematical results need to be justified by proofs. While the rest of this article is purported to show that the Indian mathematicians presented logically rigorous proofs for most of the results and processes that they discovered, it must be admitted that the particular example that Prof. Weil is referring to, the effectiveness of the cakravāla algorithm (known to the Indian mathematicians at least from the time of Jayadeva, prior to the eleventh century) for solving quadratic indeterminate equations of the form $x^{2}-N y^{2}=1$, does not seem to have been demonstrated in the available source-works. In fact, the first proof of this result was given by Krishnaswamy Ayyangar barely seventy-five years ago (A.A. Krishnaswamy Ayyangar, 'New Light on Bhāskara's Cakravāla or Cyclic Method of solving Indeterminate Equations of the Second Degree in Two Variables', Jour Ind. Math. Soc. 18, 228-248, 1929-30). Krishnaswamy Ayyangar also showed that the cakravāla algorithm is different and more optimal than the Brouncker-Wallis-Euler-Lagrange algorithm for solving this so-called "Pell's Equation."
 5 H T Colebrooke, Algebra with Arithmetic and Mensuration from the Sanskrit of Brahmagupta and Bhāskara, London 1817, p.xvii. Colebrooke also presents some of the upapattis given by the commentators Ganeśa Daivajña and Krṣ̣a Daivajña, as footnotes in his work.

[^3]: ${ }^{6}$ C.M Whish, 'On the Hindu Quadrature of the Circle, and the infinite series of the proportion of the circumference to the diameter exhibited in the four Shastras, the Tantrasangraham, Yucti Bhasa, Carana Paddhati and Sadratnamala', Trans. Roy. As. Soc. (G.B.) 3, 509-523, 1835. However, Whish does not seem to have published any further paper on this subject.
 7 Buddhivilāsinī of Gaṇeśa Daivajña (c.1545) on Līlāvatī of Bhāskarācārya II (c.1150), V.G. Apte (ed.), Vol I, Pune 1937, p. 5.
 ${ }^{8}$ Buddhivilāsin̄̄, cited above, p. 7

[^4]: ${ }^{9}$ Ganitasārasañgraha of Mahāvīrācārya, 1.9-16, cited in B. B. Datta and A. N. Singh, Vol. I, 1935, cited earlier, p. 5

[^5]: 10 Bījapallavam commentary of Kṛ̣̣na Daivajña on Bījaganita of Bhāskarācārya, T.V.Radhakrishna Sastri (ed.), Tanjore 1958, p.6-7.
 ${ }^{11}$ D. Pingree, Jyotihśāstra: Astral and Mathematical Literature, Wiesbaden 1981, p. 118.

[^6]: ${ }^{12}$ K. V. Sarma and B. V. Subbarayappa, Indian Astronomy: A Source Book, Bombay 1985.
 13 Buddhivilāsinı̄ of Gaṇeśa Daivajña, cited earlier, p. 3
 14 The Āryabhaṭ̂̀yabhāṣya of Bhāskara I (c.629) does occasionally indicate derivation of some of the mathematical procedures, though his commentary does not purport to present upapattis for the rules and procedures given in Āryabhatīya.
 ${ }^{15}$ Ignoring all these classical works on upapattis, one scholar has recently claimed that the tradition of upapatti in India "dates from the $16^{\text {th }}$ and $17^{\text {th }}$ centuries" (J.Bronkhorst, 'Pānini and Euclid', Jour. Ind. Phil. 29, 43-80, 2001).
 16 Bïjagaṇita of Bhāskarācārya, Muralidhara Jha (ed.), Varanasi 1927, p. 69.

[^7]: ${ }^{17}$ Büjaganita, cited above, p.125-127
 ${ }^{18}$ We may, however, mention the following works of C. T. Rajagopal and his collaborators, which provide an idea of the kind of upapattis presented in the Malayalam work Yuktibhāṣā of Jyesṭhadeva (c 1530) for various results in geometry, trigonometry and those concerning infinite series for π and the trigonometric functions: K. Mukunda Marar, 'Proof of Gregory's Series', Teacher's Magazine 15, 2834, 1940; K. Mukunda Marar and C. T. Rajagopal, 'On the Hindu Quadrature of the Circle', J.B.B.R.A.S. 20, 65-82, 1944; K. Mukunda Marar and C.T.Rajagopal, 'Gregory's Series in the Mathematical Literature of Kerala', Math. Student 13, 92-98, 1945; A. Venkataraman, 'Some Interesting proofs from Yuktibhāṣă', Math Student 16, 1-7, 1948; C. T. Rajagopal, 'A Neglected Chapter of Hindu Mathematics', Scr. Math. 15, 201-209, 1949; C. T. Rajagopal and A. Venkataraman, 'The Sine and Cosine Power Series in Hindu Mathematics', J.R.A.S.B. 15, 1-13, 1949; C. T. Rajagopal and T. V. V. Aiyar, 'On the Hindu Proof of Gregory's Series', Scr. Math. 17, 65-74, 1951; C.T.Rajagopal and T.V.V.Aiyar, 'A Hindu Approximation to Pi', Scr. Math. 18, 25-30, 1952; C.T.Rajagopal and M.S.Rangachari, 'On an Untapped Source of Medieval Keralese Mathematics', Arch. for Hist. of Ex. Sc. 18, 89-101, 1978; C. T. Rajagopal and M. S. Rangachari, 'On Medieval Kerala Mathematics', Arch. for Hist. of Ex. Sc. 35(2), 91-99, 1986. Following the work of Rajagopal and his collaborators, there are some recent studies which discuss some of the proofs in Yuktibhās \bar{a}. We may cite the following: T. Hayashi, T.Kusuba and M.Yano, 'The Correction of the Mādhava Series for the Circumference of a Circle', Centauras, 33, 149-174, 1990; Ranjan Roy, 'The Discovery of the Series formula for π by Leibniz, Gregory and Nīlakanṭha', Math. Mag. 63, 291-306, 1990; V.J.Katz, 'Ideas of Calculus in Islam and India' Math. Mag. 68, 163-174, 1995; C.K.Raju, 'Computers, Mathematics Education, and the Alternative Epistemology of the Calculus in the Yuktibhāṣa$’$, Phil. East and West 51, 325-362, 2001; D.F.Almeida, J.K.John and A.Zadorozhnyy, 'Keralese Mathematics: Its Possible Transmission to Europe and the Consequential Educational Implications', J. Nat. Geo. 20, 77104, 2001; D.Bressoud, 'Was Calculus Invented in India?’, College Math. J. 33, 2-13, 2002; J.K.John, 'Deriavation of the Samiskāras applied to the Mādhava Series in Yuktibhāsāa', in M.S.Sriram, K.Ramasubramanian and M.D.Srinivas (eds.), 500 Years of Tantrasañgraha: A Landmark in the

[^8]: ${ }^{20}$ Buddhivilāsinī, cited above, p.19-20.

[^9]: 21 Buddhivilāsin̄̄, cited earlier, p.128-129
 ${ }^{22}$ Colebrooke remarks that this proof of the so-called Pythagoras theorem using similar triangles appeared in Europe for the first time in the work of Wallis in the seventeenth century (Colebrooke, cited earlier, p.xvi). The proof in Euclid's Elements is rather complicated and lengthy.
 ${ }^{23}$ This method seems to be known to Bhāskarācārya-I (c. 629 AD) who gives a very similar diagram in his Āryabhaṭ̄yabhāsya, K S Shukla (ed.), Delhi 1976, p.48. The Chinese mathematician Liu Hui (c $3^{\text {rd }}$ Century AD) seems to have proposed similar geometrical proofs of the so-called Pythagoras Theorem. See for instance, D B Wagner, 'A Proof of the Pythagorean Theorem by Liu Hui', Hist. Math. 12, 71-3, 1985.

[^10]: 24Bïjapallavam, cited above, p. 13 .

[^11]: ${ }^{25}$ Bijapallavam, cited above, p.85-99.
 26 Āryabhatīyabhāsya of Nīlakanṭha, Gaṇitapāda, K Sambasiva Sastri (ed.), Trivandrum 1931, p.142143.

[^12]: ${ }^{27}$ Yuktibhāạā of Jyeṣthadeva, K. Chandrasekharan (ed.), Madras 1953. Ganitādhyāya alone was edited along with notes in Malayalam by Ramavarma Thampuran and A. R. Akhileswara Aiyer, Trichur 1947. The entire work is being edited, along with an ancient Sanskrit version, Gaṇitayuktibhāsāa, and English translation, by K.V.Sarma (in press).

[^13]: ${ }^{28}$ Both quotations cited in Reuben Hersh, Some Proposals for Reviving the Philosophy of Mathematics, Adv. Math. 31,31-50,1979.
 29 Philips J. Davis and Reuben Hersh, The Mathematical Experience, Boston 1981, p. 325

[^14]: 30 Buddhivilāsinī, cited above, p. 3
 ${ }^{31}$ Siddhāntaśsiromaṇi of Bhāskarācārya with Vāsanābhāsya and Vāsanāvārttika of Nṛsimha Daivajña, Muralidhara Chaturveda (ed.), Varanasi 1981, p. 326
 32 Siddhāntaśiromaṇi, cited above, p. 326

[^15]: ${ }^{33}$ Siddhāntaśiromaṇi, cited above, p. 30
 34 Bïjapallavam, cited earlier, p.19.

[^16]: 35 For the approach adopted by Indian philosophers to tarka or the method of indirect proof, see the preceding article on 'Indian Approach to Logic'.
 ${ }^{36}$ I. Lakatos, Proofs and Refutations: The Logic of Mathematical Discovery, Cambridge 1976, p. 1

[^17]: ${ }^{37}$ Philip J. Davis and Reuben Hersh, 1981, cited earlier, p.354-5
 38 C.H. Edwards, History of Calculus, New York 1979, p. 79

[^18]: 39 Ironically, Frege himself laid the blame for the unsatisfactory character of arithmetic that prevailed in his times and earlier, to the fact that its method and concepts originated in India: "After deserting for a time the old Euclidean standards of rigour, mathematics, is now returning to them, and even making efforts to go beyond them. In arithmetic, if only because many of its methods and concepts originated in India, it has been the tradition to reason less strictly than in geometry which was in the main developed by the Greeks."(G. Frege, Foundations of Arithmetic (original German edition, Bresslau 1884), Eng. tr. J. L. Austin, Oxford 1956, p.1e)
 ${ }^{40}$ See, for instance, D. H. H. Ingalls, Materials for the study of Navya-Nyāya Logic, Harvard 1951; D. C. Guha, Navya-Nyāya System of Logic, Varanasi 1979; J. L. Shaw, 'Number: From Nyāya to FregeRussel', Studia Logica, 41, 283-291, 1981; Roy W. Perret, 'A Note on the Navya-Nyāya Account of Number', Jour. Ind. Phil. 15, 227-234, 1985; B. K. Matilal, 'On the Theory of Number and Paryāpti in Navya-Nyāya', J.A.S.B, 28, 13-21, 1985; J.Ganeri, 'Numbers as Properties of Objects: Frege and the Nyāya', Stud. in Hum. and Soc. Sc. $\underline{3}, 111-121,1996$.

[^19]: ${ }^{41}$ G. T. Kneebone, Mathematical Logic and the Foundations of Mathematics, London 1963, p. 117

[^20]: ${ }^{42}$ See for instance the previous article on 'Indian Approach to Logic'.
 ${ }^{43}$ G. T. Kneebone, cited earlier, p. 326

[^21]: 44 Büjapallavam commentary on Büjagaṇita, cited above, p. 86 .
 45 Bī̈apallavam commentary on Bïjagaṇita, cited above, p.86-89.

[^22]: ${ }^{46}$ Bījapallavam commentary on Bījagaṇita, cited above, p.89-90.
 ${ }^{47}$ Bïjapallavam commentary on Bījaganita, cited above, p. 90-91.

[^23]: $48_{\text {Bïjapallavam commentary on Bījaganita, cited above, p.91-92. }}$.

[^24]: ${ }^{49}$ Bïjapallavam commentary on Bījaganita, cited above, p.92-93.

[^25]: 51 Bïjapallavam commentary on Bïjaganita, cited above, p.98-99.

[^26]: ${ }^{52}$ Yuktibhāṣā (in Malayalam) of Jyesṭhadeva (c.1530); Ganitāāhyāya, Ramavarma Thampuran and A.R. Akhileswara Aiyer (eds.), Trichur 1947; K. Chandrasekharan (ed.), Madras 1953; Edited, along with an ancient Sanskrit version Ganitayuktibhāṣā and English Translation, by K.V.Sarma (in Press).
 53 Yuktidīpikā of Śaṅkara Vāriyar (c.1530) on Tantrasañgraha of Nīlakaṇṭa Somasutvan (c.1500), K.V. Sarma (ed.), Hoshiarpur 1977. At the end of each chapter of this work, Śankara states that he is only presenting the material which has been well expounded by the great dvija of the Parakroḍha house, Jyesṭhadeva.
 54 Kriyākramakarī of Śaṅkara Vāriyar (c.1535) on Lülāvatī of Bhāskarācārya II (c.1150), K.V. Sarma (ed.), Hoshiarpur 1975.

[^27]: ${ }^{55}$ This result is attributed to Mādhava by Śañkara Vāriyar in Kriyākramakarī, cited earlier, p.379; see also, Yuktidīpikā, cited earlier, p.101.

[^28]: ${ }^{56}$ See, for instance, Kriyākramakarī, cited earlier, p.385; Yuktid̄̄pikā, cited earlier, p.95-96.
 57 These are attributed to Mādhava in Kriyākramakarī, cited earlier, p.279; also cited in Yuktidīpikā, cited earlier, p. 101.

[^29]: ${ }^{64}$ Yuktidīpikā, cited earlier, p. 118.

[^30]: 65 Attributed to Mādhava by Nīlakaṇṭha in his Āryabhațīyabhāsya, Gaṇitapāda, cited earlier, p.151; see also, Yuktidīpikā, cited earlier, p.117-118.
 ${ }^{66}$ Mādhava has also given the tabulated sine values (for arcs in multiples of 225^{\prime}) accurately to the third minute in the rule Śreṣthaì nāma variṣthānām... (cited by Nīlakaṇ̣̣ha in his Āryabhaṭ̄yabhāṣya, Ganitapāda, cited earlier, p.73-74).
 67 Yuktidīpikā, cited earlier, p. 119.
 68 Yuktidīpikā, cited earlier, p. 119-120.

[^31]: 69 The two results derived above for the area of a cyclic quadrilateral lead to the following formula for its circum-radius in terms of the sides (Parameśvara in his Vivaraṇa on Līlāvatī; also cited in Kriyākramakarī, cited earlier, p.363)

 $$
 R=(1 / 4)[(a b+c d)(a c+b d)(a d+b c) /(s-a)(s-b)(s-c)(s-d)]^{1 / 2}
 $$

